Strathprints Home | Open Access | Browse | Search | User area | Copyright | Help | Library Home | SUPrimo

Linear matching method for ratchet limit prediction in comparison to Rolls Royce's Hierarchical Finite Element Framework

Lytwyn, Michael and Chen, Haofeng and Martin, Michael (2012) Linear matching method for ratchet limit prediction in comparison to Rolls Royce's Hierarchical Finite Element Framework. In: 13th International Conference on Pressure Vessel Technology, 2012-05-20 - 2012-05-23, London.

[img] Microsoft Word (Lytwyn M Chen HF Martin M - Linear Matching Method for Ratchet Limit Prediction in Comparison to Rolls-Royce's Hierarchical Finite Element Framework 2012) - Draft Version
Download (3904Kb)

    Abstract

    This paper provides a direct comparison between the Linear Matching Method (LMM) and the procedures currently being employed within Rolls-Royce Power Engineering plc Hierarchical Finite Element Framework (HFEF) for the assessment of shakedown and ratcheting behaviour. These methods include the application of Direct Cyclic Analysis (DCA), utilised in an automated search procedure for load-interaction plot generation and the recently developed Hybrid procedure. The Hybrid procedure is based on a similar premise to the LMM in that the load history can be decomposed into cyclic and constant components. The LMM allows for the direct evaluation of shakedown and ratchet limits to be obtained in a traditional Bree load-interaction format, along with the subsequent maximum plastic strain range for low-cycle fatigue considerations. Three problems have been used for comparison in this paper; the classic Bree cylinder, a nozzle-in-sphere with a cold media injection transient typical of nuclear power plant loading and a pressurised two-bar structure for multi-axial failure analysis. The accuracy of each method has been verified using Abaqus step-by-step inelastic analysis. The variations in the implementation strategies associated with each method have also been discussed along with computational efficiency and effectiveness.

    Item type: Conference or Workshop Item (Paper)
    ID code: 39319
    Keywords: linear matching method, ratchet limit, finite element analysis, shakedown, direct cyclic analysis, Mechanical engineering and machinery, Mechanical Engineering, Mechanics of Materials, Computational Mechanics
    Subjects: Technology > Mechanical engineering and machinery
    Department: Faculty of Engineering > Mechanical and Aerospace Engineering
    Related URLs:
    Depositing user: Pure Administrator
    Date Deposited: 23 Apr 2012 16:19
    Last modified: 28 Mar 2014 06:34
    URI: http://strathprints.strath.ac.uk/id/eprint/39319

    Actions (login required)

    View Item

    Fulltext Downloads: