Picture of virus under microscope

Research under the microscope...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs.

Strathprints serves world leading Open Access research by the University of Strathclyde, including research by the Strathclyde Institute of Pharmacy and Biomedical Sciences (SIPBS), where research centres such as the Industrial Biotechnology Innovation Centre (IBioIC), the Cancer Research UK Formulation Unit, SeaBioTech and the Centre for Biophotonics are based.

Explore SIPBS research

Kernel principal component analysis (KPCA) for the de-noising of communication signals

Koutsogiannis, G. and Soraghan, J.J. (2002) Kernel principal component analysis (KPCA) for the de-noising of communication signals. In: 11th European Signal Processing Conference EUSIPCO'2002, 2002-09-03 - 2002-09-06.

[img]
Preview
PDF
paper049.pdf - Final Published Version

Download (288kB) | Preview

Abstract

This paper is concerned with the problem of de-noising for non-linear signals. Principal Component Analysis (PCA) cannot be applied to non-linear signals however it is known that using kernel functions, a non-linear signal can be transformed into a linear signal in a higher dimensional space. In that feature space, a linear algorithm can be applied to a non-linear problem. It is proposed that using the principal components extracted from this feature space, the signal can be de-noised in its input space.