Picture of a sphere with binary code

Making Strathclyde research discoverable to the world...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs. It exposes Strathclyde's world leading Open Access research to many of the world's leading resource discovery tools, and from there onto the screens of researchers around the world.

Explore Strathclyde Open Access research content

Kernel principal component analysis (KPCA) for the de-noising of communication signals

Koutsogiannis, G. and Soraghan, J.J. (2002) Kernel principal component analysis (KPCA) for the de-noising of communication signals. In: 11th European Signal Processing Conference EUSIPCO'2002, 2002-09-03 - 2002-09-06.

[img]
Preview
PDF
paper049.pdf - Published Version

Download (288kB) | Preview

Abstract

This paper is concerned with the problem of de-noising for non-linear signals. Principal Component Analysis (PCA) cannot be applied to non-linear signals however it is known that using kernel functions, a non-linear signal can be transformed into a linear signal in a higher dimensional space. In that feature space, a linear algorithm can be applied to a non-linear problem. It is proposed that using the principal components extracted from this feature space, the signal can be de-noised in its input space.