Picture of athlete cycling

Open Access research with a real impact on health...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by Strathclyde researchers, including by researchers from the Physical Activity for Health Group based within the School of Psychological Sciences & Health. Research here seeks to better understand how and why physical activity improves health, gain a better understanding of the amount, intensity, and type of physical activity needed for health benefits, and evaluate the effect of interventions to promote physical activity.

Explore open research content by Physical Activity for Health...

Kernel principal component analysis (KPCA) for the de-noising of communication signals

Koutsogiannis, G. and Soraghan, J.J. (2002) Kernel principal component analysis (KPCA) for the de-noising of communication signals. In: 11th European Signal Processing Conference EUSIPCO'2002, 2002-09-03 - 2002-09-06.

[img]
Preview
PDF
paper049.pdf - Final Published Version

Download (288kB) | Preview

Abstract

This paper is concerned with the problem of de-noising for non-linear signals. Principal Component Analysis (PCA) cannot be applied to non-linear signals however it is known that using kernel functions, a non-linear signal can be transformed into a linear signal in a higher dimensional space. In that feature space, a linear algorithm can be applied to a non-linear problem. It is proposed that using the principal components extracted from this feature space, the signal can be de-noised in its input space.