Picture of a black hole

Strathclyde Open Access research that creates ripples...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of research papers by University of Strathclyde researchers, including by Strathclyde physicists involved in observing gravitational waves and black hole mergers as part of the Laser Interferometer Gravitational-Wave Observatory (LIGO) - but also other internationally significant research from the Department of Physics. Discover why Strathclyde's physics research is making ripples...

Strathprints also exposes world leading research from the Faculties of Science, Engineering, Humanities & Social Sciences, and from the Strathclyde Business School.

Discover more...

Computation of transonic diffuser flows by a lagged k-omega turbulence model

Xiao, Q. and Tsai, H.M. and Liu, F. (2003) Computation of transonic diffuser flows by a lagged k-omega turbulence model. Journal of Propulsion and Power, 19 (3). pp. 473-483. ISSN 0748-4658

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

The lag model proposed by Olsen and Coakley is applied in combination with the baseline k–! two-equation turbulence model to simulate the steady and unsteady transonic flows in a diffuser. A fully implicit time-accurate multigrid algorithm is used to solve the unsteady Navier–Stokes equations and the coupled k–! turbulence model equations.Two test cases are investigated, one with a weak shock in the channel corresponding to an exit-static-toinlet-total pressure ratio Rp = 0.82 and the other with a strong shock corresponding to Rp = 0.72. Unsteady flows are induced by imposing fluctuating backpressure. Computational results are compared with experimental data and demonstrate notable improvement by the lag model for flows with strong shock–boundary-layer interactions.