Picture of smart phone in human hand

World leading smartphone and mobile technology research at Strathclyde...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by Strathclyde researchers from the Department of Computer & Information Sciences involved in researching exciting new applications for mobile and smartphone technology. But the transformative application of mobile technologies is also the focus of research within disciplines as diverse as Electronic & Electrical Engineering, Marketing, Human Resource Management and Biomedical Enginering, among others.

Explore Strathclyde's Open Access research on smartphone technology now...

Computation of transonic diffuser flows by a lagged k-omega turbulence model

Xiao, Q. and Tsai, H.M. and Liu, F. (2003) Computation of transonic diffuser flows by a lagged k-omega turbulence model. Journal of Propulsion and Power, 19 (3). pp. 473-483. ISSN 0748-4658

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

The lag model proposed by Olsen and Coakley is applied in combination with the baseline k–! two-equation turbulence model to simulate the steady and unsteady transonic flows in a diffuser. A fully implicit time-accurate multigrid algorithm is used to solve the unsteady Navier–Stokes equations and the coupled k–! turbulence model equations.Two test cases are investigated, one with a weak shock in the channel corresponding to an exit-static-toinlet-total pressure ratio Rp = 0.82 and the other with a strong shock corresponding to Rp = 0.72. Unsteady flows are induced by imposing fluctuating backpressure. Computational results are compared with experimental data and demonstrate notable improvement by the lag model for flows with strong shock–boundary-layer interactions.