Picture of athlete cycling

Open Access research with a real impact on health...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by Strathclyde researchers, including by researchers from the Physical Activity for Health Group based within the School of Psychological Sciences & Health. Research here seeks to better understand how and why physical activity improves health, gain a better understanding of the amount, intensity, and type of physical activity needed for health benefits, and evaluate the effect of interventions to promote physical activity.

Explore open research content by Physical Activity for Health...

Synthesis, characterization, and modeling of ABC triblock terpolymers: the effect of block sequence

Triftaridou, Aggeliki I. and Vamvakaki, Maria and Patrickios, Costas S. and Lue, L. (2002) Synthesis, characterization, and modeling of ABC triblock terpolymers: the effect of block sequence. Macromolecular Symposia, 183 (1). pp. 133-138. ISSN 1022-1360

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

Four equimolar terpolymers comprising ten units from each of the monomers methoxy hexa(ethylene glycol) methacrylate (HEGMA), 2(dimethylamino)ethyl methacrylate (DMAEMA) and methyl methacrylate (MMA) were prepared by group transfer polymerization (GTP), and characterized by gel permeation chromatography (GPC) and proton nuclear magnetic resonance (H-1 NMR) spectroscopy to confirm size homogeneity and composition. These terpolymers were the three block sequence isomers, ABC, BAC and ACB, as well as the statistical isomer. Aqueous solutions of the terpolymers were characterized by dynamic light scattering and turbidimetry to determine the hydrodynamic sizes and cloud points. The results indicated micelle formation in the triblocks, and absence of micellization with the statistical terpolymer. in general, a strong dependence of the hydrodynamic size and cloud point on polymer architecture was observed. Monte Carlo simulations on non-aggregating isomeric terpolymers of similar structure also showed a strong dependence of the radius of gyration on polymer architecture.