Picture of virus under microscope

Research under the microscope...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs.

Strathprints serves world leading Open Access research by the University of Strathclyde, including research by the Strathclyde Institute of Pharmacy and Biomedical Sciences (SIPBS), where research centres such as the Industrial Biotechnology Innovation Centre (IBioIC), the Cancer Research UK Formulation Unit, SeaBioTech and the Centre for Biophotonics are based.

Explore SIPBS research

Upper-bound analysis of pressure-assisted injection forging of thick-walled tubular components

Ma, Yanling and Qin, Yi and Balendra, R. (2006) Upper-bound analysis of pressure-assisted injection forging of thick-walled tubular components. International Journal of Mechanical Sciences, 48 (10). pp. 1172-1185. ISSN 0020-7403

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

An upper-bound analysis of the pressure-assisted injection forging (PAIF) of thick-walled tubular components with hollow flanges was conducted to predict the maximum forming-pressure requirements. The polymeric pressurizing material and the pure aluminium work material employed were assumed to obey the von-Mises' yield criterion, the two materials being divided into three and six zones, respectively, and described using kinematically admissible velocity fields. An upper-bound solution was derived based on this model. Experiments were conducted to validate the solution. The results suggest that the upper-bound analysis has sufficient accuracy for the prediction of the forming-pressure requirements. Subsequently, a parametric analysis was conducted to study the effects of variation of the principal parameters of the process and the geometry, such as tube thicknesses, flange dimensions and friction, on the forming-force requirements, which showed other useful applications of the upper-bound solutions.