Picture of smart phone in human hand

World leading smartphone and mobile technology research at Strathclyde...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by Strathclyde researchers from the Department of Computer & Information Sciences involved in researching exciting new applications for mobile and smartphone technology. But the transformative application of mobile technologies is also the focus of research within disciplines as diverse as Electronic & Electrical Engineering, Marketing, Human Resource Management and Biomedical Enginering, among others.

Explore Strathclyde's Open Access research on smartphone technology now...

Inactivation of jNK ACtivity by mitogen-activated protein kinase phosphatase-2 in Eahy926 endothelial cells is dependent upon agonist-specific jNK translocation to the nucleus

Robinson, C. and Sloss, C.M. and Plevin, R.J. (2001) Inactivation of jNK ACtivity by mitogen-activated protein kinase phosphatase-2 in Eahy926 endothelial cells is dependent upon agonist-specific jNK translocation to the nucleus. Cellular Signalling, 13 (1). pp. 29-41. ISSN 1873-3913

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

We have investigated the termination of agonist-stimulated mitogen-activated protein (MAP) kinase activity in EAhy926 cells by MAP kinase phosphatase-2 (MKP-2). In cells expressing either wild-type (WT) or catalytically inactive (CI)-MKP-2, there was no significant differences in TNFα-stimulated JNK or p38 MAP kinase activity, however hydrogen peroxide (H2O2)-stimulated JNK activity was substantially reduced in WT-MKP-2 expressing clones and enhanced in cells expressing CI-MKP-2. Consistent with these findings, we observed substantial nuclear translocation of JNK occurred in response to H2O2 but not TNFα. Using a phosphospecific anti-JNK antibody, we found that TNFα-stimulated JNK activity was associated principally with the cytosol while in response to H2O2, JNK activity was found within the nucleus. These results show that the role of MKP-2 in terminating JNK activity is determined by the translocation of JNK to the nucleus, which is under agonist-specific regulation and not a universal cellular response to stimulation.