Picture of person typing on laptop with programming code visible on the laptop screen

World class computing and information science research at Strathclyde...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by researchers from the Department of Computer & Information Sciences involved in mathematically structured programming, similarity and metric search, computer security, software systems, combinatronics and digital health.

The Department also includes the iSchool Research Group, which performs leading research into socio-technical phenomena and topics such as information retrieval and information seeking behaviour.

Explore

Characterisation of grain boundary cluster compactness in austenitic stainless steel

Rahimi, Salaheddin and Engelberg, Dirk and Marrow, James (2010) Characterisation of grain boundary cluster compactness in austenitic stainless steel. Materials Science and Technology, 26 (6). pp. 670-675. ISSN 0267-0836

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

The distribution of grain boundaries of particular crystallographic character can provide descriptive information on the properties of engineering materials. For example, the fraction and connectivity of corrosion susceptible grain boundaries typically correlates with the extent of intergranular corrosion and stress corrosion cracking resistance in sensitised austenitic stainless steels. A parameter defining the cluster compactness is proposed to describe the breakup of the network of corrosion susceptible grain boundaries. It may therefore provide a measure of intergranular stress corrosion cracking resistance. The cluster compactness of the network of random grain boundaries (.S29) in electron backscatter diffraction assessments of micro-structure is shown to decrease with increasing fraction of S3 boundaries. However, the cluster compactness of the network of corroded grain boundaries identified after electrochemical testing is less sensitive to changes in microstructure obtained by thermomechanical processing.