Picture of a black hole

Strathclyde Open Access research that creates ripples...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of research papers by University of Strathclyde researchers, including by Strathclyde physicists involved in observing gravitational waves and black hole mergers as part of the Laser Interferometer Gravitational-Wave Observatory (LIGO) - but also other internationally significant research from the Department of Physics. Discover why Strathclyde's physics research is making ripples...

Strathprints also exposes world leading research from the Faculties of Science, Engineering, Humanities & Social Sciences, and from the Strathclyde Business School.

Discover more...

Robust neural network proportional tracking controller with guaranteed global stability

Song, Q. and Grimble, M.J. (2003) Robust neural network proportional tracking controller with guaranteed global stability. In: IEEE International Symposium on Intelligent Control, 2003-10-05 - 2003-10-08.

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

A robust neural network is proposed for use with a proportional fixed control scheme for robot control systems. A stability analysis is included based on sector theory. A special normalized learning algorithm is used to train the neural network, which eliminates the need for a bounded regression signal being input to the system. Furthermore, an adaptive dead zone scheme is employed to enhance the robustness of the control system against disturbances. A complete stability and convergence proof is included. The selection of the dead zone does not require knowledge of the upper bound of the disturbance, which is usually unknown for the robot control system. Simulation results are presented to demonstrate the effectiveness of the proposed robust control algorithm.