Picture of aircraft jet engine

Strathclyde research that powers aerospace engineering...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by Strathclyde researchers involved in aerospace engineering and from the Advanced Space Concepts Laboratory - but also other internationally significant research from within the Department of Mechanical & Aerospace Engineering. Discover why Strathclyde is powering international aerospace research...

Strathprints also exposes world leading research from the Faculties of Science, Engineering, Humanities & Social Sciences, and from the Strathclyde Business School.

Discover more...

Crossover behavior of linear and star polymers in good solvents

Lue, Leo and Kiselev, Sergei B. (2002) Crossover behavior of linear and star polymers in good solvents. International Journal of Thermophysics, 23 (1). pp. 117-134.

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

Monte Carlo simulation calculations for the mean-square end-to-end distance and second virial coefficient for model linear and star polymers composed of hard spheres with square-well attractions are presented. For these polymers, two types of crossover behavior are observed: (i) crossover from the Gaussian chain to the Kuhnian chain limits and (ii) crossover from the semiflexible chain to the Kuhnian chain limits. A crossover theory for the proper-ties of dilute linear and star polymers under good solvent conditions is presented. This model directly relates the properties of the monomer-monomer interaction to the renormalized parameters of the theory. The predictions of the crossover theory are in good agreement with simulation data. A new equation of state for linear and star polymers in good solvents is presented. The equation of state captures the scaling behavior of polymer solutions in the dilute/semidilute regimes and also performs well in the concentrated regimes, where the details of the monomer-monomer interactions become important. This theory is compared to Monte Carlo simulation data for the volumetric behavior of tangent hard-sphere polymers.