Picture of athlete cycling

Open Access research with a real impact on health...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by Strathclyde researchers, including by researchers from the Physical Activity for Health Group based within the School of Psychological Sciences & Health. Research here seeks to better understand how and why physical activity improves health, gain a better understanding of the amount, intensity, and type of physical activity needed for health benefits, and evaluate the effect of interventions to promote physical activity.

Explore open research content by Physical Activity for Health...

Restricted structure control loop performance assessment for PID controllers and state-space systems

Grimble, M.J. (2003) Restricted structure control loop performance assessment for PID controllers and state-space systems. Asian Journal of Control, 5 (1). pp. 39-57. ISSN 1561-8625

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

A novel H2 optimal control performance assessment and benchmarking problem is considered for discrete-time state-space multivariable systems, where the structure of the controller is assumed to be fixed apriori. The controller structure may be specified to be of PID, reduced order, or lead/lag forms. The theoretical problem considered is to represent the state-space model in discrete polynomial matrix form and to then obtain the causal, stabilising, controller, of a prespecified form, that minimises an H2 criterion. This then provides the performance measure against which other controllers can be judged. The underlying practical problem of importance is to obtain a simple method of performance assessment and benchmarking low order controllers. The main theoretical step is to derive a simpler cost-minimization problem whose solution can provide both the full order and restricted structure (PID) optimal benchmark cost values. This problem involves the introduction of spectral factor and diophantine equations and is solved via a Wiener type of cost-function expansion and simplification. The numerical solution of this problem is straightforward and involves approximating the simplified integral criterion by a fixed number of frequency points. The main benchmarking theorem applies to multivariable systems that may be unstable, non-minimum phase and non-square.