Picture of person typing on laptop with programming code visible on the laptop screen

World class computing and information science research at Strathclyde...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by researchers from the Department of Computer & Information Sciences involved in mathematically structured programming, similarity and metric search, computer security, software systems, combinatronics and digital health.

The Department also includes the iSchool Research Group, which performs leading research into socio-technical phenomena and topics such as information retrieval and information seeking behaviour.

Explore

Weighted density approximation for bonding in molecules : ring and cage polymers

Sweatman, M B (2003) Weighted density approximation for bonding in molecules : ring and cage polymers. Journal of Physics: Condensed Matter, 15 (23). pp. 3875-3890. ISSN 0953-8984

[img]
Preview
Text (strathprints003779)
strathprints003779.pdf - Accepted Author Manuscript

Download (261kB) | Preview

Abstract

The focus of this work is the bonded contribution to the intrinsic Helmholtz free energy of molecules. A weighted density approximation (WDA) for this contribution is presented within the interaction site model (ISM) for ring and cage polymers. The resulting density functional theory (ISM/WDA) for these systems is no more complex than theories for a pure simple fluid, and much less complex than density functional approaches that treat the bonding functional exactly. The ISM/WDA bonding functional is much more accurate than either the ISM/HNC or ISM/PY bonding functionals, which are related to the reference interaction-site model (RISM)/HNC and RISM/PY integral equations respectively, for ideal ring polymers. This means that the ISM/WDA functional should generally be more accurate for most 'real' ring or cage polymer systems when any reasonable approximation for the 'excess' contribution to the intrinsic Helmholtz free energy is employed.