Picture of a black hole

Strathclyde Open Access research that creates ripples...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of research papers by University of Strathclyde researchers, including by Strathclyde physicists involved in observing gravitational waves and black hole mergers as part of the Laser Interferometer Gravitational-Wave Observatory (LIGO) - but also other internationally significant research from the Department of Physics. Discover why Strathclyde's physics research is making ripples...

Strathprints also exposes world leading research from the Faculties of Science, Engineering, Humanities & Social Sciences, and from the Strathclyde Business School.

Discover more...

Weighted density approximation for bonding in molecules: ring and cage polymers

Sweatman, M.B. (2003) Weighted density approximation for bonding in molecules: ring and cage polymers. Journal of Physics: Condensed Matter, 15 (23). pp. 3875-3890. ISSN 0953-8984

[img]
Preview
PDF (strathprints003779.pdf)
strathprints003779.pdf

Download (284kB) | Preview

Abstract

The focus of this work is the bonded contribution to the intrinsic Helmholtz free energy of molecules. A weighted density approximation (WDA) for this contribution is presented within the interaction site model (ISM) for ring and cage polymers. The resulting density functional theory (ISM/WDA) for these systems is no more complex than theories for a pure simple fluid, and much less complex than density functional approaches that treat the bonding functional exactly. The ISM/WDA bonding functional is much more accurate than either the ISM/HNC or ISM/PY bonding functionals, which are related to the reference interaction-site model (RISM)/HNC and RISM/PY integral equations respectively, for ideal ring polymers. This means that the ISM/WDA functional should generally be more accurate for most 'real' ring or cage polymer systems when any reasonable approximation for the 'excess' contribution to the intrinsic Helmholtz free energy is employed.