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Abstract

The focus of this work is the bonded contribution to the intrinsic Helmholtz

free energy of molecules. A weighted density approximation (WDA) for this

contribution is presented within the interaction site model (ISM) for ring and

cage polymers. The resulting density functional theory (ISM/WDA) for these

systems is no more complex than theories for a pure simple fluid, and much less

complex than density functional approaches that treat the bonding functional

exactly. The ISM/WDA bonding functional is much more accurate than

either the ISM/HNC or ISM/PY bonding functionals, which are related to the

reference interaction-site model (RISM)/HNC and RISM/PY integral equations

respectively, for ideal ring polymers. This means that the ISM/WDA functional

should generally be more accurate for most ‘real’ ring or cage polymer systems

when any reasonable approximation for the ‘excess’ contribution to the intrinsic

Helmholtz free energy is employed.

1. Introduction

Recent advances in density functional theory (DFT) for some simple (spherically symmetric,

short-range interactions) systems have produced a variety of accurate yet simple functionals

[1–5]. In particular, the fundamental measure functional for hard spheres [3] is both

numerically quite simple and very accurate for a wide range of density distributions. Naturally,

fundamental measure theory has become popular. In contrast, DFTs for general molecular

systems are often inflexible, inaccurate or laborious. These limitations are hardly surprising

given the complexity that arises from additional degrees of freedom including molecular

conformations, orientations and heterogeneity of molecular sites. To avoid this level of

complexity some DFT approaches [5–7] ‘integrate-out’ the internal molecular degrees of

freedom to arrive at a ‘coarse-grained’ simple fluid description once more. Although these

coarse-grained theories are often useful, by definition they cannot describe higher resolution

properties of molecules (for example, atom–atom pair correlations).



Usually, DFTs for molecular systems with site resolution can be classified into four types:

(a) those that employ the Woodward approach [8, 9], (b) those that employ extensions of

Wertheim’s thermodynamic perturbation theory (TPT) [10, 11], (c) those that employ an

iterative Monte Carlo (MC)-DFT scheme [12], (d) or those based on the interaction-site

model (ISM) of Chandler and co-workers [13, 14]. DFTs of type (a) are practically limited to

either perfectly rigid molecules or freely jointed chain molecules. This is discussed in more

detail in the next section. Theories of type (b) have only been applied to tangentially bonded

molecules; for example, associating hard spheres that bond on their surface. Also it is not clear,

except in the work of Kierlik and Rosinberg [10], that these theories yield accurate site–site

pair correlation functions, an important feature for any accurate theory of the inhomogeneous

fluid. Theories of type (c) are laborious, and in any case it is useful to develop a theory that

does not require MC simulations to be performed. However, DFTs of type (d) do not suffer any

of the above limitations. Indeed, the closely related RISM (reference interaction-site model)

integral equation [15] and its extensions [16] have been popular theories for molecular liquid

structure for the past three decades. Unfortunately, the density functional application of the

ISM approach has received little attention. The aim of this work is to begin to address this

issue. In particular, the aim is to develop an accurate, efficient and flexible ISM/DFT for ideal

ring and cage polymers.

This work describes a density functional method for molecules based on the ISM

approach [13] and a weighted density approximation (WDA) for the bonded contribution to

the intrinsic Helmholtz free energy (called the bonding functional in this paper). A site could

be either a single atom or a group of atoms in a molecule. Only the simplest formulation of this

approach, the application to pure fluids of ring and cage polymers, is presented here. Ring and

cage polymers have identical sites linked to form polygons and polyhedrons respectively. This

bonding functional can be applied to any non-uniformity whatever, for example to adsorption

phenomena at surfaces and to the test-particle limit to derive integral equations for bulk fluids,

etc.

This work does not attempt to refine density functional methods for the ‘excess’

contribution to the intrinsic Helmholtz free energy of molecules (defined later). This will

be the focus of future work. The role of the bonding contribution to the Helmholtz free

energy is to provide the correlations that occur due to bonding between sites in molecules.

Without this contribution molecules will tend to dissociate. So the bonding functional plays

an important role whatever the density of the system. Despite the central importance of the

bonding functional for modelling molecular systems there have been relatively few attempts

to tackle it. Indeed, the only accurate approach to modelling general molecular systems that

have arbitrary flexibility and bond lengths is, currently, via simulation; either MC, molecular

dynamics or the iterative MC-DFT scheme of Yethiraj and others [12]. Yet many accurate

DFTs exist for simple (unbonded) fluids. So the complexity of the bonding functional seems

to present a barrier to the application of DFT to general molecular systems. Clearly, a general

and relatively simple and accurate DFT for bonding has great value.

Several other theories for molecular systems have been proposed in recent decades,

often in the context of the (closely related) RISM integral equation theory. RISM theory

and its extensions [15, 16] have proved very popular for investigating a wide range of fluid

systems. This is because these theories are relatively simple and yet can give reasonably

accurate results for the structure of some bulk liquids, including polymers and polar solvents.

Two of the most popular ‘closures’ for RISM theory, namely the HNC and PY closures,

correspond to different bonding functionals within the ISM approach. This work shows that

these bonding functionals do not satisfy the Gibbs adsorption equation, i.e. that these DFTs are

thermodynamically inconsistent in this respect. In contrast the WDA bonding functional does



satisfy the Gibbs adsorption equation and so is likely to be more accurate for adsorption studies.

Apart from the HNC and PY bonding functionals only one other ISM bonding functional is

known (to this author). Stillinger proposed an ISM bonding functional [17] for amphiphiles

in solution based on analysing the linear response of the system to weak perturbations in the

dilute amphiphile, long-wavelength limit. The result is that bonded interactions are effectively

modelled by coulombic interactions.

This work compares the WDA theory with the HNC and PY theories for bonding for three

ideal ring-polymer systems, namely ideal ‘dumbbells’ (two rigidly linked ideal sites), ideal

rigid hexagons and ideal fully flexible squares. The WDA theory is found to be significantly

more accurate than the other theories when theoretical results are compared to MC simulation

results. This indicates that the WDA theory for bonding should generally be much more

accurate than the HNC and PY theories for molecular fluids for all reasonable treatments of

the excess contribution to the intrinsic Helmholtz free energy.

This paper is organized as follows. First, an alternative DFT strategy for general molecular

fluids is summarized. This establishes the motivation for a more simple and flexible theory.

Then the ISM approach is introduced for pure ring and cage polymers and the WDA, HNC

and PY approximations for the bonding functional are discussed. Results of these theories

are presented for some ideal ring-polymer fluids. The paper is concluded by a summary with

indications of future applications.

Throughout the paper it is assumed that each site in a molecule is spherical. Also, the

phrase ‘HNC-type approximation’ is used interchangeably with the phrases ‘second-order

truncated functional Taylor series expansion in density’ and ‘second-order truncated density

expansion’.

2. Theory

2.1. The Woodward bonding functional

This approach considers the properties of complete molecules in terms of the molecular density,

ρ(R), where R represents the degrees of freedom of a molecule. For example, a molecule

with N spherical sites has R = {r1, r2, . . . , rN }, where r1, etc, are the positions of the N

sites, while for a single non-spherical particle R = {r, θ}, where r and θ are the position and

orientation vectors. The fundamental Legendre transform relation is

�[ψ(R)] = F[ρ(R)] −
∫

dRρ(R)ψ(R) (1)

where

ψ(R) = µ − V ext (R) (2)

and �, F , µ, and V ext are the grand potential, intrinsic Helmholtz free energy, molecular

chemical potential and external potential, respectively. Using the fundamental theorems of

DFT gives the Euler–Lagrange (EL) equation for the density profile

ρ(R) = ρb exp(−β(V ext (R) − µex) + c(0)(R) + c(1)(R)) (3)

where ρb is the bulk molecular density, µex = µ − ln(�3ρb) is the excess chemical potential,

� is an irrelevant constant and c(0) and c(1) are the singlet-direct correlation functions due to

bonded and non-bonded (excess) interactions. Integrating with respect to ρ(R) gives

F = F id + F0 + Fex = β−1

∫

dRρ(R)(ln(�3ρ(R)) − 1) + F0 + Fex (4)



where F0 and Fex , the bonded and excess intrinsic Helmholtz free energies, are the integrals

of c(0)(R) and c(1)(R), respectively.

For a molecule composed of one non-spherical site only the excess term, Fex , is required

to specify the density functional. This is the approach typically employed in density functional

studies of liquid crystals [18]. Generally, a solution of this problem requires the evaluation of

six-dimensional integrals (five-dimensional for linear molecules which have fewer degrees of

freedom) which, although much more complicated than for simple fluids, is quite feasible and

an efficient method for large molecules.

Following Woodward [8], constraints on site positions can be included straightforwardly

for a multi-site molecule by specifying the bonding functional, F0, that bonds sites together:

F0 =
∫

dRρ(R)V 0(R). (5)

For a fully flexible ring-polymer with fixed bond lengths L we can choose

exp(−βV 0(R)) =
N

∏

i=1

δ(|ri − ri−1| − L)/4π L2 (6)

where r0 = rN . Additional intra-molecular interactions, such as torsional interactions between

next-nearest-neighbour sites, can be introduced by including additional terms in the bonding

potential. The EL equation is now

ρ(R) = ρb exp(−β(V ext (R) + V 0(R) − µex) + c(1)(R))

= ρb

N
∏

i=1

δ(|ri − ri−1| − L i )

4π L2
i

exp(−β(V ext (R) − µex) + c(1)(R)). (7)

The density for a specific site j can be calculated as

ρ j (r) =
∫

dR
′ ρ(R′)δ(r − r

′
j ). (8)

For ring and cage polymers, where each site is identical, the site density is

ρs(r) = ρs

∫

dR
′ δ(r − r

′
1)

N
∏

i=1

δ(|r′
i − r

′
i−1| − L i)

4π L2
i

exp(−β(V ext (R′) − µex) + c(1)(R′))

(9)

where ρs = Nρb is the bulk site density. Unfortunately, this expression requires the

evaluation of 3N-dimensional integrals and, unlike similar expressions for freely jointed chain

polymers [9], it cannot be re-expressed in terms of N three-dimensional single-site propagator

functions. Indeed, for molecules that have loops or are not freely jointed the 3N-dimensional

integrals in (8) render this approach completely impracticable even for small N .

2.2. The interaction site model

Clearly, a simpler and more flexible DFT for molecular fluids is desirable, for instance a method

that is no more complex than for simple fluid mixtures and can be applied to any molecular

fluid whatever. By careful design it is hoped that the accompanying reduction in accuracy

of such a theory will not obscure all the interesting physics associated with molecular fluids.

An approach that achieves considerable simplification and yet has site resolution is described

below in the context of ring and cage polymers.



We will rewrite the fundamental DFT equations in terms of individual sites from the start.

We shall focus on ring and cage polymers for simplicity. Following Chandler et al [13] we set

�[ψ(r)] = F[ρ(r)] −
∫

dr ρ(r)ψ(r) (10)

with

ψ(r) = µ − V ext (r) (11)

where ρ, µ and V ext are now the site density, chemical potential and external potential. The

fundamental theorems of DFT yield an Ornstein–Zernike relation

h0(r, r
′)/ρ(r) + h(r, r

′) = c
(2)
0 (r, r

′) + c(2)(r, r
′)

+

∫

dr
′′ (h0(r, r

′′) + ρ(r′′)h(r, r
′′))(c

(2)

0 (r′′, r
′) + c(2)(r′′, r

′)). (12)

Here, h0 and h are the intra- and inter-molecular site–site pair total correlation functions,

respectively. For example, for a uniform fluid of rigid ring and cage polymers h0 is a sum of

spherical delta functions, i.e.

h0(r, r
′′) =

N
∑

i=2

δ(|r − r
′′| − L i )/4π L2

i (13)

where L i is the distance between one site and another site (labelled i ) in the same rigid molecule.

For flexible ring and cage polymers the normalized delta functions in this expression can be

replaced by normalized smooth functions. The site–site pair direct correlation function is

composed of two terms: a bonding term, c
(2)

0 , defined by

h0(r, r
′)/ρ(r) = c

(2)

0 (r, r
′) +

∫

dr
′′ h0(r, r

′′)c
(2)

0 (r′′, r
′) (14)

and the remainder, c(2). The pair-direct correlation function can be integrated to give the

intrinsic Helmholtz free energy. Integrating once gives the EL equation

ρ(r) = ρb exp(−β(V ext (r) − µex) + c
(1)

0 (r) + c(1)(r)) (15)

where ρb is now the bulk site density, µex is now the excess site chemical potential and c
(1)

0

and c(1) are the integrals of c
(2)

0 and c(2), respectively. A further integration gives

F = F id + F0 + Fex = β−1

∫

dr ρ(r)(ln(�3ρ(r)) − 1) + F0 + Fex (16)

where F0 and Fex are the integrals of c
(1)

0 and c(1), respectively, and � is the thermal de Broglie

wavelength of a site. Unfortunately, unlike F0 in (5), the bonding contribution in (16), F0,

cannot be written as an explicit functional of ρ(r) in a compact form [13]. The aim of this

paper is to present and compare some approximate density functionals for F0 within the ISM

representation.

One method of proceeding [13, 14] is to treat bonded interactions in a similar fashion to

non-bonded interactions and perform a functional Taylor series expansion in density about the

bulk density:

β(F0[ρ] + Fex [ρ]) = β(F0(ρb) + Fex(ρb)) −
∫

dr �ρ(r)(c
(1)

0 (ρb) + c(1)(ρb))

− 1
2

∫ ∫

dr1 dr2 �ρ(r1)�ρ(r2)(c
(2)
0 (r12, ρb) + c(2)(r12, ρb))

+ β(�F0[ρ] + �Fex [ρ]) (17)



where �ρ(r) = ρ(r) − ρb, r12 = |r1 − r2| and �F0 and �Fex ensure that the relation is

exact. With (15) we obtain the density profile

ρ(r1) = ρb exp(−βV ext (r1) +

∫

dr2 �ρ(r2)(c
(2)

0 (r12; ρb) + c(2)(r12; ρb)) + B0(r1) + B(r1))

(18)

where we have set−βµex
0 = c

(1)
0 (ρb) and −βµex = c(1)(ρb), and we define the bridge functions

B0(r) = −βδ�F0/δρ(r) and B(r) = −β�δFex/δρ(r).

Approximations for c
(2)

0 (r; ρb) + c(2)(r; ρb) can be obtained from an integral equation for

the bulk fluid, i.e. by finding self-consistent solutions in the test-particle limit. In fact, the

test-site limit of the DFT (18) with B0 = B = 0 generates the RISM/HNC integral equation

for ring and cage polymers [15]. That is, the DFT (18) with B0 = B = 0 is the density-

functional analogue of the RISM/HNC integral equation for ring and cage polymers. In this

paper, equation (18) with B0 = B = 0 is called the ISM/HNC/HNC approximation. This

name indicates that the theory is based on the ISM approach with HNC-type approximations

for both the bonding and excess functionals. Since (18) is a DFT it can be applied to any

external potential or confining geometry whatever, i.e. it can be applied to situations other than

the test-site limit. For example, it can be used to investigate the equilibrium properties of ring

and cage polymers adsorbed onto solid surfaces, in slit pores, etc. Other approximations for

B0 and B are also useful, including a PY-type approximation (ISM/PY/PY)

ρ(r1) = ρb exp(−βV ext (r1))(1 +

∫

dr2 (ρ(r2) − ρb)(c
(2)

0 (r12; ρb) + c(2)(r12; ρb))) (19)

which is the density functional analogue of the RISM/PY integral equation closure [15].

2.3. Weighted density approximation for bonding in ring and cage polymers

The focus of this work is a WDA for the bonding functional of ring and cage polymers. We

know that WDAs have been successful for simple fluids [1–5]. Very often a weighted density

functional for a contribution to the intrinsic Helmholtz free energy functional is written as

F =
∫

dr ρ(r)ϕ(ρ̄(r)) (20)

where ϕ is the respective free energy contribution per particle of a bulk fluid and

ρ̄(r1) =
∫

dr2 ρ(r2)w(r12; ρ̄(r1)) (21)

where w is a suitable weight function. We can see that the ideal contribution to the

intrinsic Helmholtz free energy of a simple fluid can be defined exactly by this recipe with

ϕ(ρ) → ϕid(ρ) = β−1(ln(�3ρ) − 1) and w(r) → wid(r) = δ(r). Curtin and Ashcroft [19]

and Tarazona [1] employed this general functional form for the excess contribution to hard-

sphere fluids. These hard-sphere functionals are popular and known to be quite accurate.

It has also been used for the contribution arising from attractive interactions in super- [20]

and sub-critical [21] Lennard-Jones (LJ) fluids with generally good accuracy for adsorption

phenomena. The aim of this work is to find suitable functions within this recipe for the bonded

contribution to the intrinsic Helmholtz free energy. Usually [1, 19–21], the weight function

is defined by ensuring that pair-direct correlation functions are accurately reproduced by the

functional in the uniform fluid limit. This corresponds to ensuring that the zeroth, first and

second functional derivatives of F with respect to ρ(r) are accurate. Once the form of the

functional is fixed in this way it should remain accurate for sufficiently small inhomogeneities.



Equation (20) is re-written for the bonding functional as

F0 =
∫

dr ρ(r)ϕ0(ρ̄0(r)) (22)

with

ρ̄0(r1) =
∫

dr2 ρ(r2)w0(r12; ρ̄0(r1)). (23)

Differentiating (22) twice with respect to density for a uniform fluid with density ρu

gives [1, 19–21] (in Fourier space)

−β−1c
(2)
0 (k; ρu) = 2ϕ′

0(ρu)w0(k; ρu) + ρuϕ
′′
0 (ρu)(w0(k; ρu))

2

+ 2ρuϕ
′
0(ρu)w0(k; ρu)w

′
0(k; ρu) (24)

where dashes indicate differentiation with respect to density. Since we wish F0 to generate

accurate c
(2)
0 for a uniform fluid we equate (24) with the Fourier transformed uniform fluid

limit of (14), i.e.

2ϕ′
0(ρu)w0(k; ρu) + ρuϕ

′′
0 (ρu)w

2
0(k; ρu) + 2ρuϕ

′
0(ρu)w0(k; ρu)w

′
0(k; ρu)

= − β−1h0(k)/ρu(1 + h0(k)). (25)

Solving for ϕ0 and w0 gives

ϕ0(ρu) = −β−1 f (k = 0) ln(ρu) + B

2w0(k) − w2
0(k) = f (k)/ f (k = 0)

(26)

where f (k) = h0(k)/(1 + h0(k)) and B is a constant. This means that

w0(k) = 1 −
√

1 − f (k)/ f (k = 0) (27)

which has the correct normalization properties (w0(k = 0) = 1). Putting (22)–(27) together

gives

F0 = −β−1

∫

dr ρ(r)(ln((ρ̄0(r))α) + B) (28)

for the bonding functional where α = f (k = 0) = (N − 1)/N for ring and cage polymers.

This WDA for bonding, ISM/WDA, in ring and cage polymers is the main result of this work.

Usually, a cut-off in the range of the weight function is desirable. In this work this cut-off

range, rc, is determined by inspection of the weight function for each system studied. The

truncated weight function must then be renormalized to ensure that w0(k = 0) = 1.

Using this bonding functional transforms the EL equation for the density profile, (15),

into

ρ(r1) = ρ1−α
b ρ̄0(r1)

α exp

(

−β(V ext (r1) − µex)

+ α

∫

dr2

(

ρ(r2)

ρ̄0(r2)
− 1

)

w0(r12) + c(1)(r1)

)

. (29)

The important advantage of (29) over the Woodward approach [8, 9] is that it is easily solved

provided we can calculate c(1)(r). That is, integrals in (29) are three-dimensional whatever

the value of N , rather than 3N-dimensional as in (9), and so solution of (29) is relatively

easy (provided calculation of c(1)(r) is straightforward). In addition, this route to a DFT

for molecules is expected to yield accurate bulk pair correlations regardless of bond length,

an attractive feature since it implies that the DFT will generally be accurate (for sufficiently

small inhomogeneities). So, this ISM/WDA approach fulfils the simplicity and flexibility

criteria required by this work and it is also expected to be accurate. This is a rare combination

of attributes. The results section below confirms that the ISM/WDA theory is indeed quite

accurate.



2.4. The Gibbs adsorption equation

A desirable feature of any DFT is that it satisfies the Gibbs adsorption equation [22]. This

equation describes a fundamental thermodynamic property of any system. Differentiating (10)

with V ext and T constant gives

∂�

∂µ
=

∫

dr

(

∂�

∂ρ(r)

)

µ

∂ρ(r)

∂µ
+

(

∂ F

∂µ

)

ρ(r)

−
∫

dr ρ(r). (30)

With a DFT approach the first term on the RHS of (30) is always zero due to minimization of

the grand potential and, ideally, the middle term on the RHS should also be zero so that the

fundamental equality

∂�/∂µ = −N (31)

is obeyed. This requires the intrinsic Helmholtz free energy functional to be independent of

the bulk chemical potential (at fixed ρ(r), V ext (r) and T ) or the bulk density or any other

parameter dependent on the bulk chemical potential. Quite often, a DFT is proposed that

does not satisfy this relation. Such functionals are likely to lose accuracy as adsorption

increases [22]. They are also thermodynamically inconsistent in the sense that two routes

for calculating the grand potential, namely (1) by integrating (31) and (2) by direct calculation

from the density functional with the equilibrium density profile, will disagree [22]. And the

discrepancy will grow with increasing adsorption.

Because of its HNC-type approximation for F0, the ISM/HNC functional is dependent

on the bulk density and so does not satisfy the Gibbs adsorption equation and is likely to be

a poor choice for adsorption studies. The same holds for the ISM/PY functional. Since the

ISM/WDA functional avoids reference to the bulk density it does satisfy the Gibbs adsorption

equation and so is likely to be more accurate for adsorption studies.

Also, when V ext varies slowly on the length scale of the polymer we have ρ̄0(r) ≈ ρ(r)

which with (29) gives for the ISM/WDA theory

ρ(r) ≈ ρb(exp(−β(V ext (r) − µex) + c(1)(r)))N (32)

which becomes exact in the limit of a uniform external potential. In contrast, the corresponding

result for the ISM/HNC theory is

ρ(r1) ≈ ρb exp(−β(V ext (r1) − µex) +

∫

dr2 (ρ(r2) − ρb)c
(2)

0 (r12; ρb) + c(1)(r1)) (33)

which does not become exact in the limit of a uniform external potential. The ISM/PY

functional also fails to be exact in this limit.

These reasons, i.e. that the ISM/WDA functional is exact in the uniform fluid limit (by

this I mean a fluid with any uniform density not necessarily equal to the bulk or reservoir

density) and satisfies the Gibbs adsorption equation are two strong reasons for favouring it

over other ISM bonding functionals that do not have these properties. We will see below that

the ISM/WDA functional is also accurate for some non-uniform fluids.

3. Results for ideal ring polymers

Since the focus of this work is on the bonding functional, not the excess functional, emphasis

is placed on results for ideal molecules. Results are obtained for ideal dumbbells, ideal rigid

hexagons and ideal flexible squares. MC simulation results are compared against ISM results



with the WDA, HNC and PY approximations for the bonding functional for each system.

Results are calculated for each system adjacent to a hard wall:

V ext
H W (z) =

{

0; z � 0

∞; z < 0
(34)

and a LJ 9-3 wall

V ext
L J (z) =

{

ε
(

2
15

(σ/z)9 − (σ/z)3
)

; z � 0

∞; z < 0
(35)

for several values of reduced temperature, T ∗ = kB T/ε, and reduced bond length L∗ = L/σ .

Here, z is the distance of a site from the wall. These results give a general indication of

the accuracy of each theory for adsorption in slit pores, spherical cavities, on stationary test

molecules, etc.

For each theory the required input data is the bulk fluid intra-molecular contribution to

the total site–site pair correlation function, h0(r). For rigid dumbbells and hexagons this is

easily obtained from (13). For flexible squares this function is determined in the appendix.

The MC simulations of flexible square polymers involve ‘folding’ moves as well as positional

and orientational moves. A folding move involves an attempt to re-assign the folding angles

at random from an appropriate distribution (see the appendix for details). Results for ρ(r)/ρb,

which is independent of the bulk density, are calculated for various L∗ and T ∗.

3.1. Numerical details

The weighted densities are 3D convolutions of weight functions and density profiles. For

each application below the weight functions resulting from the ISM/WDA have components

similar to delta functions at r = L so these convolutions are best solved by 3D fast Fourier

transforms (FFTs). This requires the density profile to be spherically symmetric. Adsorption

against a planar wall is isomorphic with adsorption on a spherical particle with radius R in the

limit R → ∞. This fact allows each planar DFT problem to be solved quite easily using 3D

FFTs. The error reduces with increasing R. We find that setting R = 100σ produces errors

of about 1% compared to solutions with very large R. The numerical mesh has a radial range

of over 320σ with resolution equal to 0.02σ .

Each grand canonical ensemble MC simulation is performed in a slit with width 20σ .

Each wall is identical and results are obtained by averaging the results for adsorption of each

site against each wall. The external potential exerted by each wall is set to zero for z � 10σ .

This slit width is sufficiently large that the results described below correspond to adsorption

on a single wall.

3.2. Dumbbells

Figure 1(a) compares the weight function, w0(r) (27), and the bulk fluid site–site pair-direct

correlation function, c
(2)

0 (r) (14), for ideal dumbbells over the range 1.5L < r < 5L. Each

function has been scaled by (r/L)2 so that a true reflection of the significance of each function

is apparent. A cut-off at rc = 3L is chosen for each theory. That is, w0 entering the WDA

functional and c
(2)

0 entering the HNC and PY-type functionals are cut at rc = 3L and then

re-scaled to ensure that the values of w0(k = 0) and c
(2)

0 (k = 0) are correct (1 and (N − 1)/N

respectively).

Figure 1(b) shows ρ(r)/ρb predicted by each theory for ideal dumbbells against a hard

wall and a 9-3 LJ wall. Each 9-3 LJ wall result is shifted vertically in this figure for clarity.



(b)

(a)

Figure 1. (a) Weight function entering the WDA for bonding, w0(r) (full curve), and bulk fluid

site–site pair-direct correlation function entering the HNC and PY-type bonding functionals, c
(2)

0 (r)

(dotted curve), for ideal dumbbells with bond length L . Each function is scaled by (r/L)2 and, due

to ‘ringing’ caused by the finite mesh, the lines are drawn through every second data point only.

(b) Relative site densities, ρ(z)/ρb , for an ideal dumbbell fluid adsorbed by hard and 9-3 LJ walls.

Full, dotted and broken curves correspond to WDA, HNC and PY functionals for bonding while

the circles are MC simulation results.

We see that the WDA bonding functional is very accurate for each L and T studied. Since the

WDA bonding functional yields the correct bulk fluid equation of state it also has the correct

hard wall contact density. However, the HNC and PY-type results are quite inaccurate very

close to each wall and they do not predict the correct bulk fluid equation of state. Indeed, for

L∗ = 1.0 and T ∗ = 1.0 the ISM/HNC theory has no solution. Note that each theory, when

solutions exist, is able to predict the ‘hump’ in ρ(r)/ρb that occurs at r∗ ≈ 1 + L∗. Since

dumbbells can be viewed as freely jointed chain polymers exact results for this system can be

obtained from the Woodward approach ((9) with N = 2) with little additional difficulty.

3.3. Stiff hexagons

Figure 2(a) compares the weight function, w0(r), and the bulk fluid site–site pair-direct

correlation function, c
(2)

0 (r), for stiff ideal hexagons over the range 2.5L < r < 8L. A

cut-off of rc = 5.26L is chosen for each theory.



(a)

(b)

Figure 2. (a) As for figure 1(a) except for the ideal stiff hexagonal polymer fluid. (b) As for

figure 1(b) except for the ideal stiff hexagonal polymer fluid.

Figure 2(b) shows ρ(r)/ρb predicted by each theory for stiff ideal hexagons against a hard

wall and a 9-3 LJ wall. We see that the WDA bonding functional is quite accurate for each

L and T studied although significant errors can be seen very close to each wall. The PY-type

results are completely inaccurate and the ISM/HNC theory has no solution for any of these

states. The errors in these WDA results are much larger than for ideal dumbbells. This might

be due to the combination of increased orientational order of ideal hexagons relative to ideal

dumbbells when close to an adsorbing wall and the lack of explicit orientational degrees of

freedom in the ISM DFTs. As these hexagons are stiff exact results could also be obtained

from (3) with R representing positional and orientational degrees of freedom.

3.4. Flexible squares

Figure 3(a) compares the weight function, w0(r), and the bulk fluid site–site pair-direct

correlation function, c
(2)

0 (r), for flexible ideal square polymers over the range 1.5L < r < 7L.

A cut-off of rc = 4.6L is chosen for each theory.

Figure 3(b) shows ρ(r)/ρb predicted by each theory for flexible ideal square polymers

against a hard wall and a 9-3 LJ wall. We see that the WDA bonding functional has good



(a)
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Figure 3. (a) As for figure 1(a) except for the ideal flexible square polymer fluid. (b) As for

figure 1(b) except for the ideal flexible square polymer fluid.

accuracy for each L and T studied, with the largest errors occurring at the maximum of each

profile. The HNC and PY-type results are poor when solutions exist. The errors in these WDA

results are slightly larger than for ideal dumbbells and much better than for stiff ideal hexagons.

Once again, this might be due to the increased orientational order of ideal hexagons relative to

both ideal dumbbells and flexible squares when close to an adsorbing wall.

This application to ideal flexible square polymers clearly demonstrates the utility of this

WDA approach. Flexible square polymers have eight degrees of freedom. Yet the ISM DFTs

exhibit just three degrees of freedom. No other DFT in the literature has this combination of

simplicity and accuracy.

4. Summary

A WDA for the bonded contribution to the Helmholtz free energy of ring and cage polymers

has been developed and applied successfully to calculate distribution functions for some ideal

ring polymers. The results of the previous section indicate that the WDA bonding functional



is much more accurate than the HNC and PY bonding functionals for molecular studies,

regardless of the size or flexibility of the molecules. This is to be expected given that the WDA

bonding functional satisfies the Gibbs adsorption equation and gives the exact contribution

to the Helmholtz free energy for any uniform fluid whereas the HNC and PY-type theories

fail in this respect. As predicted, the performance of the HNC and PY bonding functionals

deteriorates with increasing adsorption.

It follows that we can expect the WDA functional to generally be much more accurate than

the HNC and PY functionals for F0 even when Fex is not zero, i.e. for real molecules (provided

the same functional for Fex is used when comparing these approaches). So the accuracy of

the RISM integral equation [15, 16], whether in the test-site limit or the 3D test-molecule

limit, can be improved by replacing HNC or PY bonding functionals with the WDA bonding

functional. The additional complexity of the WDA bonding functional relative to the HNC or

PY bonding functionals is not particularly significant.

The WDA bonding functional is also relatively simple and flexible. It is much simpler

than the Woodward prescription for molecular DFTs [8, 9] described earlier for non-uniform

ring and cage polymer fluids, i.e. it is no more complex than theories for pure simple fluids

regardless of the number of sites in, or flexibility of, the polymer. This is particularly important

for modelling flexible ring polymers that have very many degrees of freedom. Within the WDA

for bonding the number of degrees of freedom is always reduced to three, which means that

calculations can be performed quite easily for some idealized geometries. The complexity of

the real system is contained, in a limited manner, within the prescription for the bulk fluid site–

site total pair correlation function, h0(r). The accuracy of the ISM/WDA theory is not affected

by bond length and so it is likely that it can be applied successfully to realistic molecules. Note

that theories based on Wertheim’s TPT1 [10, 11] have only ever been applied to molecules

with sites that bond on their surface. Clearly, the theory is more complex than coarse-grained

approaches [5–7], but these approaches do not resolve at the site level. Essentially, ISM DFTs

treat molecular fluids as simple fluid site mixtures with additional bonding correlations.

The WDA bonding functional for ring and cage polymers has potential applications to

systems such as diatomic nitrogen, ethane, benzene, etc, and could also be used to model

methane, carbon tetrachloride, etc. For these real fluids an excess functional, Fex , is also

required, and specification of this functional will form the focus of future work. The WDA

bonding functional is likely to lose accuracy as the degree of fluid inhomogeneity increases,

i.e. when the density profile varies quickly over the length scale of bond lengths. It would be

interesting to examine the dimensional cross-over behaviour of the ISM/WDA functional and

to derive corresponding bonding functionals for systems with dimensionality other than three.

Apart from the applications to ideal ring and cage polymers described here it might

be possible to extend the WDA bonding functional to more general molecules and other

systems without introducing significant additional complexity. Flexible ring polymers

with adjacent sites linked by harmonic interactions are particularly interesting due to the

isomorphism between this classical system and Feynman’s path-integral formulation of

quantum mechanics for quantum particles [23]. This mapping is used routinely in path-integral

MC simulations [24]. Indeed, simply modifying the flexible square model considered in this

paper so that it has harmonic bonds instead of bonds with fixed length leads to a path-integral

model with four ‘polymer beads’ of a dilute quantum gas, and the density profile in figure 3(b)

would then correspond to results obtained by an approximate solution of the Schrödinger

equation for particles with Boltzmann statistics. This suggests that some fluid problems with

significant quantum behaviour could be solved (approximately) by use of a classical DFT [25].

This approach has already been used to model freezing of quantum fluids [26] but has not

been extended to more general fluid properties. Extension of the WDA bonding functional to



Figure A.1. Schematic diagram of a flexible square polymer. L is the bond length while φ1 and

φ2 are the folding angles.

molecules with non-identical sites, e.g. carbon dioxide, alkanes, polymers, amphiphiles, etc,

is also desirable.
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Appendix

Consider a flexible square polymer with arbitrary configuration. It has eight degrees of

freedom—three for its position, r, and three for its orientation, θ, relative to a fixed frame

of reference and two more for its ‘folding angles’, denoted φ1 and φ2 in figure A.1. The

configurational integral for a single ideal flexible square polymer can be written as

Z =
∫

dr

∫

dθ

∫ π

0

dφ1 P(φ1)

∫ 2π

0

dφ2 P(φ2) exp(−βV ext (r, θ, φ1, φ2)) (36)

where

P(φ1) = 3
4

sin(φ1) sin(φ1/2)

P(φ2) = 1/2π.
(37)

For the uniform fluid the probability distribution for site 4 to be at a distance r from point 1

(see figure A.1) can be written as

P(r) =
∫ π

0

dφ1
3
4

sin(φ1) sin(φ1/2)

∫ 2π

0

dφ2

2π
δ(r − d ′(φ1, φ2)) (38)

where

d ′ = L sin(φ1/2)
√

2(1 + cos(φ2)). (39)

Evaluating the integral (38) gives

P(r) =
3

4π
(2

√
1 − a + a ln((2 − a + 2

√
1 − a)/a)) (40)

where a = (r/2L)2. This means that for a flexible square polymer we must have

h0(r) = 2δ(L − r)/4π L2 +
3

(4πr)2
(2

√
1 − a + a ln((2 − a + 2

√
1 − a)/a)). (41)



A folding move in a MC simulation attempts to reassign the folding angles, φ1 and φ2, of

a particular square polymer. Since the probability distribution for φ2 is uniform, φ2 can be

chosen at random with uniform probability from the interval {0, 2π}. But since the probability

distribution for φ1 is non-uniform we instead choose a dummy parameter, x , at random with

uniform probability from the interval {0, 1} and then choose φ1 such that

x =
∫ φ1

0

dφ′
1 P(φ′

1) (42)

i.e. we choose φ1 = 2 sin−1(x1/3).
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