Picture of a black hole

Strathclyde Open Access research that creates ripples...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of research papers by University of Strathclyde researchers, including by Strathclyde physicists involved in observing gravitational waves and black hole mergers as part of the Laser Interferometer Gravitational-Wave Observatory (LIGO) - but also other internationally significant research from the Department of Physics. Discover why Strathclyde's physics research is making ripples...

Strathprints also exposes world leading research from the Faculties of Science, Engineering, Humanities & Social Sciences, and from the Strathclyde Business School.

Discover more...

Waveguide surface plasmon resonance studies of surface reactions on gold electrodes

Sheridan, A.K. (2002) Waveguide surface plasmon resonance studies of surface reactions on gold electrodes. Faraday Discussions, 121. pp. 139-152. ISSN 1359-6640

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

We describe the fabrication and characterisation of gold-coated graded index channel waveguide sensors designed for simultaneous electrochemical and surface plasmon resonance studies. The active sensing electrode area is a thin gold film between 0.5 and 5 mm in length and 200 µm wide deposited on top of a 3 µm wide waveguide which forms one arm of a Y-junction while the other arm of the Y-junction serves as a reference. Using these devices we have measured simultaneously the changes in transmittance through the device whilst carrying out cyclic voltammetry in either sulfuric or perchloric acid solution or during the deposition of an UPD layer of copper at the gold surface. In all cases we obtain stable and reproducible results which demonstrate the very high sensitivity of the devices to sub-monolayer changes occurring at the gold electrode surface. The response of these integrated optoelectrochemical devices is discussed in terms of a numerical model for the propagation of light within the waveguide structure.