Strathprints Home | Open Access | Browse | Search | User area | Copyright | Help | Library Home | SUPrimo

Piezoelectric ultrasonic transducers with fractal geometry

Mulholland, A. J. and Walker, A. J. (2011) Piezoelectric ultrasonic transducers with fractal geometry. Fractals, 19 (4). pp. 469-479. ISSN 0218-348X

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

Piezoelectric ultrasonic transducers typically employ composite structures to improve their transmission and reception sensitivities. The geometry of the composite is regular with one dominant length scale and, since these are resonant devices, this dictates the central operating frequency of the device. In order to construct a wide bandwidth device it would seem natural therefore to utilize resonators that span a range of length scales. In this article we consider such a device and build a theoretical model to predict its performance. A fractal medium is used as this contains a wide range of length scales and yields to a renormalization approach. The propagation of an ultrasonic wave in this heterogeneous medium is then analyzed and used to construct expressions for the electrical impedance, and the transmission and reception sensitivities of this device as a function of the driving frequency. The results presented show a marked increase in the reception sensitivity of the device.

Item type: Article
ID code: 37163
Notes: added pdf and references
Keywords: piezoelectric, Sierpinski gasket, fractal, ultrasound, transducer, renormalization analysis, lattices, drosophila, hearing, fractal geometry , Probabilities. Mathematical statistics, General, Modelling and Simulation, Geometry and Topology, Applied Mathematics
Subjects: Science > Mathematics > Probabilities. Mathematical statistics
Department: Faculty of Science > Mathematics and Statistics
Related URLs:
    Depositing user: Pure Administrator
    Date Deposited: 30 Jan 2012 09:55
    Last modified: 28 Mar 2014 05:48
    URI: http://strathprints.strath.ac.uk/id/eprint/37163

    Actions (login required)

    View Item