Picture of wind turbine against blue sky

Open Access research with a real impact...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs.

The Energy Systems Research Unit (ESRU) within Strathclyde's Department of Mechanical and Aerospace Engineering is producing Open Access research that can help society deploy and optimise renewable energy systems, such as wind turbine technology.

Explore wind turbine research in Strathprints

Explore all of Strathclyde's Open Access research content

Computational methodologies for modelling, analysis and simulation of signalling networks

Gilbert, David and Fuss, H. and Gu, Xu and Orton, Richard and Robinson, S. and Vyshemirsky, Vladislav and Kurth, M. J. and Downes, C. S. and Dubitzky, W. (2006) Computational methodologies for modelling, analysis and simulation of signalling networks. Briefings in Bioinformatics. pp. 339-353. ISSN 1467-5463

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

his article is a critical review of computational techniques used to model, analyse and simulate signalling networks. We propose a conceptual framework, and discuss the role of signalling networks in three major areas: signal transduction, cellular rhythms and cell-to-cell communication. In order to avoid an overly abstract and general discussion, we focus on three case studies in the areas of receptor signalling and kinase cascades, cell-cycle regulation and wound healing. We report on a variety of modelling techniques and associated tools, in addition to the traditional approach based on ordinary differential equations (ODEs), which provide a range of descriptive and analytical powers. As the field matures, we expect a wider uptake of these alternative approaches for several reasons, including the need to take into account low protein copy numbers and noise and the great complexity of cellular organisation. An advantage offered by many of these alternative techniques, which have their origins in computing science, is the ability to perform sophisticated model analysis which can better relate predicted behaviour and observations.