Picture of virus under microscope

Research under the microscope...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs.

Strathprints serves world leading Open Access research by the University of Strathclyde, including research by the Strathclyde Institute of Pharmacy and Biomedical Sciences (SIPBS), where research centres such as the Industrial Biotechnology Innovation Centre (IBioIC), the Cancer Research UK Formulation Unit, SeaBioTech and the Centre for Biophotonics are based.

Explore SIPBS research

A study of hydrodynamics of three-dimensional planing surface

Nan Xie, J.X. and Vassalos, D. and Jasionowski, A. (2005) A study of hydrodynamics of three-dimensional planing surface. Ocean Engineering, 32 (13). pp. 1539-1555. ISSN 0029-8018

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

The hydrodynamic problem of 3D planing surface is studied by a finite element approach. The planing surface is represented by a number of pressure patches whose strengths are constant at each element. The unknown pressure strength is obtained by using the free surface elevation condition under the planing surface and Kutta condition at the transom stern. Previous studies indicate that, when the constant pressure distribution method is used, the number of buttocks should be less than five or six, otherwise the calculated pressure distribution will start to oscillate and even become divergent. In the present study, after careful examination of the influence coefficients, it is found that the accuracy of the influence coefficients matrix is very important to the convergence of the solution, especially when the number of elements is relatively high. The oscillation of the pressure distribution can be avoided by constant element method if the influence coefficients are sufficiently accurate. The predicted results of the present paper with more number of buttocks are in good agreement with other researchers'. It is concluded that the irregularity of the pressure distribution found in previous studies is most likely caused by the low accuracy in their calculation of the influence coefficients, not by the method itself.