Picture of a sphere with binary code

Making Strathclyde research discoverable to the world...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs. It exposes Strathclyde's world leading Open Access research to many of the world's leading resource discovery tools, and from there onto the screens of researchers around the world.

Explore Strathclyde Open Access research content

An investigation into catalysts to improve low temperature performance in the selective catalytic reduction of NO with NH3

Xiao, Youhong and Zhou, Peilin and Zhang, W and Zhang, H. (2009) An investigation into catalysts to improve low temperature performance in the selective catalytic reduction of NO with NH3. Proceedings- Institute of Marine Engineering Science and Technology Part a Journal of Marine Engineering and Technology, 2009 (14). pp. 19-26. ISSN 1476-1548

[img]
Preview
PDF
PL_Zhou_Paper_1_JrnMarSc_Tech_Invest_into_catalists.pdf - Draft Version

Download (2MB) | Preview

Abstract

Selective catalytic reduction with NH3 is considered one of the most effective technologies controlling NOx emission. Metal Fe-based catalysts were used in the investigation to improve low temperature performance of NOx conversion. The temperature range studied was betweet 15 degrees C and 350 degrees C in increments of 50 degrees C. The honeycomb catalysts were prepared by an impregnation method. The study also included characterisation of catalysts by BET, XRD, H2-TPR and XPS methods. It was found that an increase in metal Fe content from 2 to 6% wt offered an improvement in the catalytic performance. However, a further increase in Fe content resulted in a decrease in its performance. More than 90% NOx conversion rate could be achieved over the Fe-based honeycomb catalyst at a low temperature by doping with different weights of Ni and Zr metals. Amongst all the catalysts studied, the mixed metal catalyst of Fe-Ni-Zr was the one with most potential. This was because of its higher NOx conversion rate at a low temperature and also because of its wider operating temperature window. The effect of gas hourly space velocity (GHSV) was also investigated and the results showed that as GHSV increased, the reduction of NOx decreased.