Picture of aircraft jet engine

Strathclyde research that powers aerospace engineering...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by Strathclyde researchers involved in aerospace engineering and from the Advanced Space Concepts Laboratory - but also other internationally significant research from within the Department of Mechanical & Aerospace Engineering. Discover why Strathclyde is powering international aerospace research...

Strathprints also exposes world leading research from the Faculties of Science, Engineering, Humanities & Social Sciences, and from the Strathclyde Business School.

Discover more...

The catalytic subunit of protein kinase A triggers activation of the type V cyclic GMP-specific phosphodiesterase from guinea-pig lung

Burns, F and Rodger, I W and Pyne, N J (1992) The catalytic subunit of protein kinase A triggers activation of the type V cyclic GMP-specific phosphodiesterase from guinea-pig lung. Biochemical journal, 283 (2). pp. 487-491. ISSN 0264-6021

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

The type V cyclic GMP phosphodiesterase was partially purified from the high-speed supernatant of guinea-pig lung. The isoenzyme displayed linear kinetics for cyclic GMP hydrolysis, with Km = 2.2 +/- 0.2 microM and Vmax. = 1.2 +/- 0.08 nmol/min per mg. The selective type V phosphodiesterase inhibitor Zaprinast inhibited cyclic GMP hydrolysis with IC50 (concn. giving 50% inhibition) = 0.45 +/- 0.08 microM. Isobutylmethylxanthine promoted a 3-fold increase in the binding of cyclic GMP to the isoenzyme. The addition of the catalytic subunit of protein kinase A to an activation cocktail containing the partially purified type V phosphodiesterase resulted in a marked increase in Vmax. for cyclic GMP hydrolysis (approximately 10-fold at 40 units of protein kinase A). We have suggested that protein kinase A triggers phosphorylation of the phosphodiesterase, which results in activation of phosphodiesterase activity. In addition, the sensitivity to inhibition by Zaprinast is severely decreased (the IC50 for inhibition is 7.5 +/- 1.1 microM), suggesting that the potency of phosphodiesterase inhibitors is effected by phosphorylation of the enzyme.