Picture of a black hole

Strathclyde Open Access research that creates ripples...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of research papers by University of Strathclyde researchers, including by Strathclyde physicists involved in observing gravitational waves and black hole mergers as part of the Laser Interferometer Gravitational-Wave Observatory (LIGO) - but also other internationally significant research from the Department of Physics. Discover why Strathclyde's physics research is making ripples...

Strathprints also exposes world leading research from the Faculties of Science, Engineering, Humanities & Social Sciences, and from the Strathclyde Business School.

Discover more...

Wear associated with growth defects in combined cathodic arc/unbalanced magnetron sputtered CrN/NbN superlattice coatings during erosion in alkaline slurry

Wang, H.W. and Stack, M.M. and Lyon, S.B. and Hovsepian, P. and Munz, W.D. (2000) Wear associated with growth defects in combined cathodic arc/unbalanced magnetron sputtered CrN/NbN superlattice coatings during erosion in alkaline slurry. Surface and Coatings Technology, 135 (1). pp. 82-90. ISSN 0257-8972

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

The erosive wear associated with growth defects was studied in deaerated 0.5 M (Na2CO3-NaHCO3) buffer solutions containing 150-200 mum alumina particles on a rotating cylinder erosion-corrosion system for PVD CrN/NbN superlattice coatings grown by the are bond sputtering (ABS) process on mild steel BS6323. Corrosion was minimised by selective control of the sample's potential, according to potentiodynamic polarisation, during the slurry erosive wear test. The morphology of the coatings, particularly of the defects, was examined in planar and cross-section views by means of scanning electron microscopy before and after the test. It is found that wear of the coating is typically preferential to the defects, progressing from the particle exterior top to the interior with erosion time, while the coating matrix (areas free of such defects) is largely intact, after 24 h prolonged exposure to erosion. (C) 2000 Elsevier Science B.V. All rights reserved.