Picture of virus under microscope

Research under the microscope...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs.

Strathprints serves world leading Open Access research by the University of Strathclyde, including research by the Strathclyde Institute of Pharmacy and Biomedical Sciences (SIPBS), where research centres such as the Industrial Biotechnology Innovation Centre (IBioIC), the Cancer Research UK Formulation Unit, SeaBioTech and the Centre for Biophotonics are based.

Explore SIPBS research

Further studies on the synthesis of 24(S),25-epoxycholesterol. A new, efficient preparation of desmosterol

Spencer, Thomas A. and Li, Dansu and Russel, Jonathon S. and Tomkinson, Nicholas C. O. and Willson, Timothy M. (2000) Further studies on the synthesis of 24(S),25-epoxycholesterol. A new, efficient preparation of desmosterol. Journal of Organic Chemistry, 65 (7). pp. 1919-1923. ISSN 0022-3263

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

Efforts to improve the synthesis of 24(S),25-epoxycholesterol from stigmasterol have included identification of 6α-hydroxy-i-steroid (I) (R1 = OH, R2 = αOH) as a byproduct from the ozonolysis of steroid (II) and an attempt to effect conversion of sulfone I (R1 = SO2Ph, R2 = βOMe) (III) to diol (IV) via Payne rearrangement and nucleophilic trapping of (S)-2-hydroxymethyl-3,3-dimethylepoxide, which led instead to (V) (R3 = α or β OH) (97% yield). A more efficient synthesis of 24(S),25-epoxycholesterol was achieved via coupling of cuprate I (R1 = CuCNLi, R2 = βOMe) (VI) with allylic acetate H2C=CHCMe2OAc to give 73% of I (R1 = CH2CH=CMe2, R2 = βOMe) (VII), in the most efficient conversion yet of a C22 intermediate to desmosterol or its acetate.