Picture of person typing on laptop with programming code visible on the laptop screen

World class computing and information science research at Strathclyde...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by researchers from the Department of Computer & Information Sciences involved in mathematically structured programming, similarity and metric search, computer security, software systems, combinatronics and digital health.

The Department also includes the iSchool Research Group, which performs leading research into socio-technical phenomena and topics such as information retrieval and information seeking behaviour.

Explore

Intermediate temperature stable proton conductors based upon SnP2O7, including additional H3PO4

Xu, Xiaoxiang and Tao, Shanwen and Wormald, Philip and Irvine, John T. S. (2010) Intermediate temperature stable proton conductors based upon SnP2O7, including additional H3PO4. Journal of Materials Chemistry, 20 (36). pp. 7827-7833. ISSN 0959-9428

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

In order to examine the influence of phosphate impurities upon the conduction properties of SnP2O7, SnP2O7-H3PO4 composites were synthesised through different methods with varying starting P:Sn molar ratios. The composites were then carefully characterised by XRD, SEM, HRTEM, NMR, FT-IR and a. c. impedance spectroscopy to explore the phase compositions and electrical properties. It was found that cubic SnP2O7 is the main crystalline phase and amorphous phases were observed when starting P: Sn ratios exceeded 2 : 1. Solid State 31 P NMR confirmed residual phosphoric acid in samples with high starting P: Sn ratios whilst impedance spectroscopy indicated these to be good proton conductors. The highest conductivity observed was 3.5 x 10(-2) S/cm at 300 degrees C in air for samples with high starting P: Sn ratios and calcined at higher temperatures. The conductivity stability of the composites was found to be promising, suggesting a new approach for the development of technically useful proton conductors.