Picture of virus under microscope

Research under the microscope...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs.

Strathprints serves world leading Open Access research by the University of Strathclyde, including research by the Strathclyde Institute of Pharmacy and Biomedical Sciences (SIPBS), where research centres such as the Industrial Biotechnology Innovation Centre (IBioIC), the Cancer Research UK Formulation Unit, SeaBioTech and the Centre for Biophotonics are based.

Explore SIPBS research

Optimal minimum variance estimation for nonlinear discrete-time multichannel systems

Grimble, M.J. and Ali Naz, S. (2010) Optimal minimum variance estimation for nonlinear discrete-time multichannel systems. IET Signal Processing, 4 (6). pp. 618-629.

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

A non-linear operator approach to estimation in discrete-time multivariable systems is described. It involves inferential estimation of a signal which enters a communication channel that contains non-linearities and transport delays. The measurements are assumed to be corrupted by a coloured noise signal correlated with the signal to be estimated. The solution of the non-linear estimation problem is obtained using nonlinear operators. The signal and noise channels may be grossly non-linear and are represented in a very general non-linear operator form. The resulting so-called Wiener non-linear minimum variance estimation algorithm is relatively simple to implement. The optimal non-linear estimator is derived in terms of the nonlinear operators and can be implemented as a recursive algorithm using a discrete-time non-linear difference equation. In the limiting case of a linear system, the estimator has the form of a Wiener filter in discrete-time polynomial matrix system form. A non-linear channel equalisation problem is considered for the design example.