Picture of athlete cycling

Open Access research with a real impact on health...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by Strathclyde researchers, including by researchers from the Physical Activity for Health Group based within the School of Psychological Sciences & Health. Research here seeks to better understand how and why physical activity improves health, gain a better understanding of the amount, intensity, and type of physical activity needed for health benefits, and evaluate the effect of interventions to promote physical activity.

Explore open research content by Physical Activity for Health...

Optimal minimum variance estimation for nonlinear discrete-time multichannel systems

Grimble, M.J. and Ali Naz, S. (2010) Optimal minimum variance estimation for nonlinear discrete-time multichannel systems. IET Signal Processing, 4 (6). pp. 618-629.

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

A non-linear operator approach to estimation in discrete-time multivariable systems is described. It involves inferential estimation of a signal which enters a communication channel that contains non-linearities and transport delays. The measurements are assumed to be corrupted by a coloured noise signal correlated with the signal to be estimated. The solution of the non-linear estimation problem is obtained using nonlinear operators. The signal and noise channels may be grossly non-linear and are represented in a very general non-linear operator form. The resulting so-called Wiener non-linear minimum variance estimation algorithm is relatively simple to implement. The optimal non-linear estimator is derived in terms of the nonlinear operators and can be implemented as a recursive algorithm using a discrete-time non-linear difference equation. In the limiting case of a linear system, the estimator has the form of a Wiener filter in discrete-time polynomial matrix system form. A non-linear channel equalisation problem is considered for the design example.