Picture of virus under microscope

Research under the microscope...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs.

Strathprints serves world leading Open Access research by the University of Strathclyde, including research by the Strathclyde Institute of Pharmacy and Biomedical Sciences (SIPBS), where research centres such as the Industrial Biotechnology Innovation Centre (IBioIC), the Cancer Research UK Formulation Unit, SeaBioTech and the Centre for Biophotonics are based.

Explore SIPBS research

Report on the evening rump session on InN - July 21, 2004 at the 2004 international workshop on nitride semiconductors

Trager-Cowan, Carol (2005) Report on the evening rump session on InN - July 21, 2004 at the 2004 international workshop on nitride semiconductors. In: Physica status solidi C - conferences and critical reviews. Physica status solidi c - current topics in solid state physics . Wiley-VCH, Weinheim, pp. 2240-2245.

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

The following is a report on the Evening Rump Session on InN held as part of the 2004 International Workshop on Nitride Semiconductors. It summarises (1) the presentations given by the 5 panellists covering data generated from theory and a wide range of experimental techniques relating to the properties of InN, in particular its bandgap and (2) the subsequent discussion. The most recent parameter-free electronic-structure calculations predict a value for the InN bandgap of 0.8 +/- 0.4 eV; experimental results obtained from a wide range of InN samples point to a bandgap around 0.7 eV, or to a bandgap around 1.3 eV. The interpretation of available data is hotly contested, not surprisingly a definitive conclusion on the true value of the bandgap of InN was not reached during the Rump Session. It was agreed that InN is a difficult material to grow and its properties vary depending on how and where it is grown. However with mobilities of order 4000 cm(2)/Vs, high saturation velocities and the absorption wavelengths of InGaN spanning the visible, InN is a material with huge potential.