Picture of a sphere with binary code

Making Strathclyde research discoverable to the world...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs. It exposes Strathclyde's world leading Open Access research to many of the world's leading resource discovery tools, and from there onto the screens of researchers around the world.

Explore Strathclyde Open Access research content

Sports engineering : developing an integrated, cross-disciplinary engineering design degree

Wodehouse, Andrew and Ion, William and Mair, Gordon (2011) Sports engineering : developing an integrated, cross-disciplinary engineering design degree. In: Design Education for Creativity and Business Innovation. The Design Society. ISBN 978-1904670339

[img] Microsoft Word (Sports Engineering: developing an integrated, cross-disciplinary design degree)
Sports_Engineering_E_PDE_Paper_v4_resubmission.doc - Submitted Version
Available under License Unspecified.

Download (443kB)

Abstract

This paper describes the issues and challenges in developing a robust, cross-departmental curriculum for an integrated Sports Engineering degree, and provides some key pointers for universities considering developing such a programme. Sports Engineering is an emerging cross-disciplinary industrial and academic sector, providing an engaging platform for the development of advanced technological, human-centred products that are utilised by high-performance athletes and the general public alike. There is an opportunity for academic institutions to supply graduates who not only understand the traditional engineering skills required in product development, but can bring an understanding of physiology, anatomy and biomechanics to bear on the design of these products. An overview of activity in both the academic and industrial settings is delivered in this context. The paper goes on to review a current BEng Sports Engineering degree and the consolidation of links with the University’s Bioengineering department in the development of an MEng option. The key linkages, timings and synergies across relevant disciplines are highlighted and discussed. The paper concludes by reviewing the major challenges for engineering departments to maintain efficiencies in teaching while supporting and embedding specific knowledge required for sports product design