Picture of person typing on laptop with programming code visible on the laptop screen

World class computing and information science research at Strathclyde...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by researchers from the Department of Computer & Information Sciences involved in mathematically structured programming, similarity and metric search, computer security, software systems, combinatronics and digital health.

The Department also includes the iSchool Research Group, which performs leading research into socio-technical phenomena and topics such as information retrieval and information seeking behaviour.

Explore

Hybrid solar sail and SEP propulsion for novel Earth observation missions

Ceriotti, Matteo and McInnes, Colin (2011) Hybrid solar sail and SEP propulsion for novel Earth observation missions. Acta Astronautica, 69 (9-10). pp. 809-821. ISSN 0094-5765

[img] PDF
Ceriotti_M_strathprints_Hybrid_solar_sail_and_solar_electric_propulsion_for_novel_Earth_observation_missions_Sept_2010.pdf - Preprint

Download (782kB)

Abstract

In this paper we propose a pole-sitter spacecraft hybridising solar electric propulsion (SEP) and solar sailing. The intriguing concept of a hybrid propulsion spacecraft is attractive: by combining the two forms of propulsion, the drawbacks of the two systems cancel each other, potentially enabling propellant mass saving, increased reliability, versatility and lifetime over the two independent systems. This almost completely unexplored concept will be applied to the continuous monitoring of the Earth’s polar regions through a pole-sitter, i.e. a spacecraft that is stationary above one pole of the Earth. The continuous, hemispherical, real-time view of the pole will enable a wide range of new applications for Earth observation and telecommunications. In this paper, families of 1-year-periodic, minimum-propellant orbits are found, for different values of the sail lightness number and distance from the pole. The optimal control problem is solved using a pseudo-spectral method. The process gives a reference control to maintain these orbits. In addition, for stability issues, a feedback control is designed to guarantee station-keeping in the presence of injection errors, sail degradation and temporary SEP failure. Results show that propellant mass can be saved by using a medium-sized solar sail. Finally, it is shown that the feedback control is able to maintain the spacecraft on-track with only minimal additional effort from the SEP thruster.