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In this paper we propose a pole-sitter spacecraft hybridising solar electric propulsion (SEP) and solar sailing. The 
intriguing concept of a hybrid propulsion spacecraft is attractive: by combining the two forms of propulsion, the 
drawbacks of the two systems cancel each other, potentially enabling propellant mass saving, increased reliability, 
versatility and lifetime over the two independent systems. This almost completely unexplored concept will be 
applied to the continuous monitoring of the Earth’s polar regions through a pole-sitter, i.e. a spacecraft that is 
stationary above one pole of the Earth. The continuous, hemispherical, real-time view of the pole will enable a wide 
range of new applications for Earth observation and telecommunications. In this paper, families of 1-year-periodic, 
minimum-propellant orbits are found, for different values of the sail lightness number and distance from the pole. 
The optimal control problem is solved using a pseudo-spectral method. The process gives a reference control to 
maintain these orbits. In addition, for stability issues, a feedback control is designed to guarantee station-keeping in 
the presence of injection errors, sail degradation and temporary SEP failure. Results show that propellant mass can 
be saved by using a medium-sized solar sail. Finally, it is shown that the feedback control is able to maintain the 
spacecraft on-track with only minimal additional effort from the SEP thruster. 

 
 

I. INTRODUCTION 
Geostationary spacecraft provide a continuous 

hemispherical view of equatorial and medium-latitude 
zones, but unfortunately these platforms cannot cover 
high-latitude regions. Conversely, a pole-sitter is a 
spacecraft that is constantly above one of the Earth’s 
poles, i.e. lying on the Earth’s polar axis [1]. This type 
of mission would provide a continuous, hemispherical, 
real-time view of the pole, and will enable a wide range 
of new applications in climate science and 
telecommunications. 

Traditionally, polar observation is performed with 
one spacecraft or a constellation of spacecraft in highly-
inclined low or medium Earth orbits [2]; however, the 
observation is not continuous, but it relies on the 
passage of one spacecraft above regions of interest. 
Therefore, the temporal coverage of the entire polar 
region can be quite poor, and furthermore different 
areas are imaged at different times, hence missing the 
possibility to have a real-time complete view of the 
pole. 

The hemispheric view of the pole is currently 
reconstructed through a composite image that is made of 
several images taken at different times. The main 
science applications for polar image composites are the 
generation of atmospheric motion vectors (AMV) and 
the identification of storm systems. According to 
Lazzara [3], these two applications among others would 
benefit from a true pole-sitter spacecraft. For example, 

both at the North Pole and South Pole, there is an 
interval of latitudes in which the AMV are not available, 
due to a gap between geostationary and polar orbiting 
satellites. Citing Lazzara, “the possibility of seeing the 
deep polar regions with dramatically increased temporal 
resolution, and even the opportunity for focused 
observations on a specific geographic region, with 
potential high spatial and temporal resolution, are 
capabilities that would improve the short term 
forecasting and understanding of atmospheric 
phenomena that occur in these portions of the world”. 

Another significant benefit to the polar regions from 
a pole-sitter platform will be for communications. It is 
well known that line-of-sight telecommunications to 
conventional spacecraft in geostationary orbits is not 
possible at high latitudes and polar regions. While the 
distance of the spacecraft from the Earth could preclude 
high-bandwidth telecommunications, a pole-sitter will 
be able to always see the South Pole, providing a 
continuous flow of data with scientific South Pole 
stations. The same spacecraft could be accomplish both 
observation and telecommunication tasks over the polar 
regions. Furthermore, telecommunication with polar 
regions will be a key issue in future as changes to the 
arctic ice pack opens navigation channels for shipping. 
Such developments will necessitate real-time polar 
imaging for route planning.  

Here we propose to hybridise solar electric 
propulsion (SEP) with solar sailing, in order to get 
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benefit from combining the two propulsion systems on 
the same spacecraft. 

Solar electric propulsion (SEP) is a mature 
technology that provides a spacecraft with a relatively 
low thrust (of the order of a fraction of a Newton [4]). 
Nevertheless, despite their high efficiency, the thrusting 
time and hence the mission duration is always limited 
by the mass of propellant on-board. 

In contrast, solar sailing [5] is a propellant-less 
spacecraft propulsion system: it exploits the solar 
radiation pressure due to solar photons impinging on a 
large, highly reflecting surface (the sail) to generate 
thrust. Despite the original idea of solar sailing being 
rather old [6], only very recently a spacecraft 
successfully  deployed a solar sail: JAXA’s IKAROS 
[7]. 

Due to the interesting potential of enabling missions 
that are not constrained by propellant mass, studies on 
potential solar sail missions have been undertaken, 
while others are still ongoing [8, 9]. Solar sails seem to 
be suitable for potentially long duration missions that 
require a small, but continuous, thrust. They have been 
proposed for interplanetary transfers [10], or to generate 
artificial equilibrium points [11], for example in the 
proximity of the Lagrange points of the Sun-Earth [12] 
or Sun-Moon [13] system. 

The idea of hybridise solar sail propulsion and solar 
electric propulsion (SEP) on the same spacecraft was 
proposed in 2002 [14] and is almost completely 
unexplored. Current research ranges from artificial 
equilibria in the Sun-Earth system for Earth observation 
[15] to interplanetary transfers [16], to displaced 
periodic orbits in the Earth-Moon system [17]. In 
addition, IKAROS is exploiting hybrid propulsion [7]. 

The reason for this interest is due to the fact that in 
the hybrid system, at the cost of increased spacecraft 
complexity, the two propulsion systems complement 
each other, cancelling their reciprocal disadvantages and 
limitations. In principle, SEP can provide the missing 
acceleration component towards the Sun, that the sail 
cannot generate. Similarly, the hybrid spacecraft can be 
seen as an SEP spacecraft, in which an auxiliary solar 
sail provides part of the acceleration, enabling saving of 
propellant mass, and lower demand on the electric 
thruster, possibly with some intervals in which it could 
be switched off. Moreover, the reliability of the system 
is increased: the solar sail is only providing part of the 
necessary acceleration, and hence it can be smaller than 
what would be required for a pure sail spacecraft; also, 
the sail deployment is not a single-point failure, as the 
SEP could serve as a propulsion backup. In this case, a 
degraded, possibly shorter mission can be foreseen. In 
this sense, the hybrid spacecraft can be seen as a way to 
gradually introduce solar sails for space applications, 
and hence to reduce the advancement degree of 
difficulty (AD2) [18] in the TRL scale. 

In this work we propose hybrid propulsion for the 
pole-sitter spacecraft, thus extending the pure SEP 
spacecraft proposed by Driver [1] and the hybrid 
spacecraft stationary above the Lagrangian point L1 
proposed by Baig and McInnes [15], providing a 
practical realisation of the solar sail pole-sitter orbits by 
Forward [19]. 

Previous work by the authors focused on the 
optimisation procedure, including a shape-based 
approach to find first-guess solutions [20], and a 
comparison between pure SEP and hybrid sails in terms 
of spacecraft mass [21]. In this paper we present the 
design and control of optimal orbits for a pole-sitter 
mission. After explaining the dynamics that will be 
used, we will present the optimal control problem that is 
solved to obtain minimum propellant consumption 
orbits. After a comparison between the hybrid sail and 
pure SEP performance, a feedback control system will 
be designed to keep the spacecraft on track when 
subject to injection error, sail degradation, or temporary 
SEP failure. 

II. EQUATIONS OF MOTION 
We consider the circular restricted three-body 

problem (CR3BP), that describes the motion of a 
negligible mass (the spacecraft) under the gravitational 
attraction of two masses (the primaries, Sun and Earth 
in this case), that rotate of circular motion around their 
common centre of mass. We use a synodic reference 
frame centred at the centre of mass, and having the  
axis collinear with the two primaries, pointing towards 
the Earth, the  axis is aligned with the angular 
velocity of the primaries 

x̂

ẑ
ˆω z  and the  axis 

completes the right-hand system (

ŷ

Fig. 1). 
The dynamics of a spacecraft at position r  is 

governed by: 
 2 s TU    r ω r a  a  

where  is the position vector and the effective 
potential, which takes into account gravitational 
attraction and centrifugal acceleration, is: 

r
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Fig. 1: The restricted three-body problem. 
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Fig. 2. (a) Definition of the cone and centre-line angles (plane of the figure is perpendicular to the sail, containing the

Sun vector r1). (b) Solar sail cone and clock angles. 

The system is normalised such that 1  , 
, and the unit of distance is the separation of 

the two primaries. With these assumptions, the position 
along the -axis of  is 

1 2 1m m 

x̂ 1m  , and the position of  

is 1
2m

 , and . 603.0404 1
In addition, sa  and  are the accelerations 

provided by the solar sail and the SEP thruster, 
respectively. The former is expressed as [

Ta

5]: 

 0
0 2

1

1 1 ˆˆcos sin cos
2s

m
g h

m r

     a n t  

 ˆn TFSCT
Steerable 

SEP thruster

Highly reflective surface Spacecraft bus

Here  is the component normal to the non-ideal 

sail and parallel  to it, in the plane of the Sun vector 
. 

n̂

t̂

1r 0  is the lightness number at the beginning of the 

mission, 0 0A m   : values of 0 , ranging from 0 

(no sail, hence pure SEP spacecraft) to 0.05 can be 
assumed for near- to mid-term technology [22].  and 

m are the spacecraft mass at the beginning of the 
mission and at any given time, respectively. Note that, 
in the hybrid case, the spacecraft mass varies in general, 
due to the SEP propellant consumption, and so does the 
acceleration from the sail. 

0m

3 2m1.  kg  53 10   is the 

critical sail loading for the Sun. 
The sail acceleration is controlled through the 

spacecraft attitude: the vector n  can be described using 
the cone angle 

ˆ
  (angle between n̂  nd 1̂r , see Fig. 2a) 

and the clock angle 

 
Fig. 3: Configuration of the hybrid sail/SEP spacecraft, 

with steerable thrust. 
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The SEP thruster is assumed to be variable-thrust 
and mounted on a gimbal, such that the thrust vector T  
is completely controllable (refer again to Fig. 3). The 
propellant mass flow m  is related to the thrust through 
the Newton’s law and the conservation of mass: 



 em T v  (2) 

where the exhaust gas velocity is . 0e spv I g spI  is the 

specific impulse in seconds and 2s0 9.81 mg . 

a

  (angle measured around r , 

starting from the vertical plane, of the component of  
perpendicular to r , see Fig. 2b). In the hybrid 

spacecraft, thin film solar cells (TFSC) cover an area 

1̂

n̂

1̂

0.05TFA A

m̂

sr 

 on the sail, and are used to power the SEP 

thruster (see Fig. 3 for a potential configuration). The 
area ratio is a conservative estimation based on previous 
studies [15]. The actual direction of the sail acceleration 

 is related to  through the coefficients g and h [n̂

0.9

15], 
that can be computed as a function of the reflectivity of 
the sail, , and of the thin film  [0.4TFr  14]: 

III. POLE-SITTER MISSION 
A pole-sitter spacecraft, during the operational phase 

of its mission, is constantly aligned with the polar axis 
of the Earth. If we neglect precession of the equinoxes 
and nutation (which are long-term, and thus irrelevant in 
this analysis), the polar axis of the Earth does not 
change its direction while the Earth is orbiting the Sun. 
Therefore, in the synodic reference frame, the same axis 
rotates with a motion of apparent precession. Its angular 
velocity is the opposite of that of the primaries, or ω . 
Therefore the polar axis spans a full conical surface 
every year (see Fig. 4). The cone half angle is the tilt of 
the axis relative to the ecliptic, i.e. 23.5 degeq  . 

IAC-10-C4.6.8 Page 3 of 13 



 

 
Fig. 4: Apparent precession of the Earth’s polar axis due 

to rotation of reference frame. 
 
Consequently, the pole-sitter shall follow the Earth’s 

polar axis, and describe a 1-year-periodic orbit which 
can be described by: 
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r  (3) 

where  is the distance from the centre of the Earth, 

and is a continuous function of time. The North Pole 
case is considered here. 

 d t

In this work, we search for optimal periodic pole-
sitter orbits, that minimise the SEP propellant 
consumption over a period (one year), while 
maintaining the pole-sitter condition (3) at each time 
during the mission. 

 
III.I. Optimal Control Problem 

Since the periodic orbit, i.e. the function  d t

xn

, is 

not known a priori, an optimal control problem is 
solved to find it, together with the control history that 
guarantees minimal fuel consumption. The problem is 

the one of finding the state time history  and 

control time history , between initial and 

final time,  and , minimising the cost function: 

 t x
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and general non-linear path constraints: 
 

 

subject to the dynamical constraints: 
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 , , 0t c x u  

For this specific case, the time span in normalised 
units is 0 0, 2ft t  

velocity and mass 

. The state vector is composed of 

the position,  of the 

ing dynamical 
onstraints: 

 Tmx r v

spacecraft, which leads to the follow
c

 2 s

eT v

U m

 
      
  

x

 2b, instead of angles and magnitude, to 
d the ambiguity related to the use of angular 

ariables: 

v

ω v a T  

The controls (sail normal n̂  and thrust vector T ) are 
expressed in Cartesian components in the reference 
frame in Fig.
avoi
v

 
1 1 1 1 1 1r r   

T
n n n T T T   

Since the sail normal n̂  is a unit vector, a path 
constraint shall be added to guarantee the uniqueness of 
the solution: 

 

u  

1 1 1

2 2 2 1rn n n     

The pole-sitter constraint in Eq. (3) is enforced 
thr  ough the path constraints:

 
 

 
2, 2,atan 2 , 0y xr r t  

2 2
2, 2, 2, tan 0x y z eqr r r   

We assume that the spacecraft is injected in the pole-
sitt

e orbit is periodic and 
symmetric with respect to the same plane, the initial 
elocity can only have a positive y component. 

Additionally it is enforced that the position and velocity 
at 

 

er orbit at the winter solstice, at some point in the x-z 
plane. To guarantee that th

v  

time ft  match those (partially to be determined) at 

time 0t . 

The objective is to maximise the final mass of the 
spacecraft, i.e. minimise the fuel consumption, after one 
period: 

  f fJ m m t     (4) 

To so
PSOP  

 lve this optimal control problem, the tool 
T was used [23]. PSOPT implements a direct 

of nodes, the infinite dimensional optimal 
ontrol problem is transformed into 

non

pseudo-spectral method to solve the optimal control 
problem. By discretising the time interval into a finite 
number 
c a finite dimension 

-linear programming (NLP) problem. Pseudo-
spectral methods use Legendre or Chebyshev 
polynomials to interpolate the time dependent variables 
at the nodes. The advantage of using pseudo-spectral 
methods is that the derivatives of the state functions at 
the nodes are computed by matrix multiplication only, 
and that the integral in the cost function is approximated 

ẑ

ω

 

ŷ  x̂

 eq  t
Winter 
solstice
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Fig. 6: The Earth as seen from the pole-sitter spacecraft at 
0.018 AU using an instrument with 30' field of view. 

using well known Gauss quadrature rules. We refer to 
[24, 25] for a detailed description of pseudo-spectral 
methods. 

The optimisation process is initialised with a first-
guess solution. The generation of this sub-optimal 
trajectory, and corresponding control history, is the 
subject of previous work [20]. Here we provide a brief 
outline of the procedure. The first guess is generated by 
using a shape-based approach, in which a specific orbit 
for the spacecraft and initial mass 0m  are assigned, and 

then the controls that enable that orbit are obtained from 
the equations of motion, with an iterative process. The 
orbit is discretised into a finite number of points in time. 
At each point, the sail cone and clock angles are 
computed numerically, minimising the magnitude of the 
SEP acceleration. Once sa  is k wn, Ta  can be 

computed by differencing. Assuming that the thrust 
remains constant from one point to the next along the 
orbit, Eq. 

no

(2) can be integrated to find the mass change. 
With this new value of mass, the procedure iterates on 
to the next point on the orbit. 

 
III.II. Solutions 

Optimal orbits are sought for three different 
spacecraft: a pure SEP (no solar sail, 0 0  ) and two 

different hybrid spacecraft, with increasing size of the 
sail ( 0 0.05, 0.1  ). The initial mass is 0m 1000 kg  

t ion engineand 3000 sspI 

Fig. 5: Optimal hybrid pole-sitter orbits for three 
different values of β0. 

Table 1: Optimal pole-sitter orbits for three different 
values of lightness number. 

0  mind , AU maxd , AU fm , kg maxT , N 

0.0 0.015675 0.020332 843.430417 0.180648 
0.05 0.013116 0.023422 901.896219 0.141085 
0.1 0.011896 0.028363 925.192867 0.134256 

 

 (based on  cur  

tec
al orb

 spacecra  the Earth in 
summer and closer in winter. All the orbits are at about 

AU (or abo
hows the view 

eeded for the 

ren

hnology (existing NSTAR/DS1 [26]). 
Each case leads to a different optim it (Fig. 5). 

The pure SEP spacecraft optimal orbit is symmetric 
with respect to summer and winter, while if a solar sail 
is added, the ft goes farther from

0.018 ut 2.7 millions of km) from the Earth’s 
centre, as can be noted in Table 1. Fig. 6 s
of the Earth from this distance. Note that the Lagrangian 
point 1L  of the Earth-Sun system is about 1.5 million 

km from the Earth. Fig. 5 shows the three orbits: in the 
same plot, the cone described by the Earth’s polar axis 
is also superimposed. Table 1 also highlights the 
propellant mass saving that a hybrid solar sail offers 
with respect to pure SEP. Also, the presence of the sail 
allows us to reduce the maximum thrust needed, thus 
allowing the use of a smaller engine. 

However, it shall be noted that these results assume 
a spacecraft with the same initial mass, both in the case 
of SEP only or hybrid propulsion. If a sail is present, 
then the dry mass of the spacecraft shall be higher or the 
payload mass reduced. A complete investigation of the 
mass budget of the hybrid spacecraft, including a 
discussion on the benefit of the hybrid propulsion in 
terms of mass saving, is presented in [21]. 

It was stated that the thrust vector is assumed 
completely controllable, from a trajectory design point 
of view. However this cannot be achieved in practice. 
Although a gimbal system can be used, the thruster 
cannot eject propellant in the direction of the solar sail, 
in the case of the hybrid system. Also it is difficult to 
engineer a thruster that could rotate 180 degrees. 
Therefore, we analysed the steering angle n
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Fig. 8: Optimal orbits obtained constraining the 
maximum distance from the Earth, for 0 0.05  . 

thruster, with respect to the main spacecraft bus (and the 
sail. Fig. 7 shows the evolution during one orbit of the 
angle between the sail normal and the thrust vector: this 
is the angle represented in Fig. 3. Two important 
considerations can be noted: the first is that the angle 
variation is limited to about 2 deg, for all the three cases 
presented. This implies very little movement of the 
thruster, and possibly a lightweight gimbal mechanism. 
The second is that the angle is around 56 deg, and 
therefore the thruster does not thrust towards the sail, 
during the whole orbit. 

Additional families of orbits can be found by 
considering different mission requirements. For 
example, a camera with a fixed focal length may require 
that the variation of the distance from the Earth (and 
hence the excursion along the z axis) shall be limited. 
However, the value of the distance itself is not assigned, 
as the camera could be mounted with a suitable focal 
length. 

In order to find optimal orbits that have reduced 
excursion along the z axis, but still minimise the 
propellant consumption by settling at the correct 
altitude, we can devise the following objective function: 
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Fig. 7: Angle between the thrust vector T and the solar 
sail normal n, during the three orbits in Fig. 5. 

2
2

0

d
2f z

w
J m v t




     

in which the final mass is weighed together with the 
integral of the square of the velocity component along 
the z axis. Hence, a velocity zv  along the orbit is 

penalising the cost according to the weight w. By 
varying the weight, families of optimal orbits are found, 
trading off 
th

propellant consum with altitude change 
roughout the orbit. Table 2 shows, for 5 different 

ption 

values of the weight, the minimum and maximum 
distance from the Earth, and the respective final mass 
after one year, assuming an initial mass of 1000 kg and 

0 0.05  . It can be seen that, as the weight increases, 

the orbit converges to a “flat” orbit parallel to the x-y 

plane, at a distance of about 0.017 AU. This is the 
minimum consumption altitude for a constant-distance 
orbit [20]. The propellant cost of having a flat orbit with 
respect to a free one can be quantified as about 8 kg in 
the first year for 0 0.05   (compare Table 1 and Table 

2). 
er family of orbits can be found assuming that 

the payload cannot get further from the Earth than a 
defined distance. In this case, optimal orbits can be 
found by using the same objective function as in Eq. (4), 
but adding the additional state bound: 

  0 cos

Table 2: Characteristics of optimal orbits obtained 
minimising a weighed sum of propellant mass and 
velocity in z, for 0 0.05  . 

w fm , kg mind , AU maxd , AU 

0.014744 0.019960 899.638660 155 10  
0.016982 0.017942 894.916402 145 10  
0.017262 0.017763 894.270074 131 10  

132 10  0.017411 0.017668 893.914791 

 

Anoth

z max eqr d    

This leads to y of orbits plotted in Fig. 8; 
Tab

the famil
le 3 describes some of their characteristics. Once 

again limiting the altitude is counterbalanced by 
additional propellant consumption. We refer to [20] for 
a more detailed discussion of the different types of pole-
sitter orbits. 
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Table 3: Characteristics of optimal orbits with 
constrained maximum distance, for 0 0.05  . 

maxd , AU mind , AU fm , kg 

0.018 0.013179 898.507259 
0.017 0.013196 896.688888 
0.016 0.013201 894.203213 
0.015 0.013183 890.818185 
0.014 0.013105 886.186387 
0.013 0.012838  879.749327 
0.012 0.012000 870.546037 

IV. SPACECRAFT FEEDBACK CONTROL 
Due to the instability of pole-sitter orbits (which was 

verified numerically), a feedback control is necessary to 
keep the spacecraft on track, counterbalancing errors 
and small perturbations that are not considered in the 
dynamics for the reference solution, as well as errors in 
the spacecraft model (e.g. degradation and non-
idealness of the sail). 

In this section, a linear quadratic regulator (LQR) 
will be designed with this aim [27]. It is important to 
underline that we would like to control the spacecraft 
using only the thruster; the reason of this choice is 
twofold: first, the thruster offers three independent 
control variables, and the thrust vector can in principle 
be oriented in any direction and have an arbitrary 
magnitude (this does not happen with the sail force): 
this guarantees the controllability of the system; second, 
we assume that steering the thruster or varying the 
thrust magnitude is cheaper and quicker (in terms of 
angular momentum change) than changing the attitude 
of the solar sail. Since the dynamics of the orbit are 
relatively slow, we neglect the response time of the 
actuator when designing the feedback control. Also, we 
assume that the spacecraft has perfect knowledge of its 
position in space at any time. This can be achieved with 
a proper tracking system from Earth. 

The feedback control is designed as an additional 
control component which sums to the reference (or 
feedforward) control. The control system is 
implemented using MATLAB/Simulink (Fig. 9). 

In this paper, a superscripted tilde (~) will denote the 
reference values, as given by the trajectory optimisation. 
The reference control is transformed into cone/clock 
angles, such that the control vector over time becomes: 

     T

T Tt    u T

where ,T T 
T

 are the clock and cone angles of the thrust 

vector , defined in an analogous way as for . This is 
done to reduce the control vector to the minimum 
number of variables and avoid the additional constraint, 
with respect to the Cartesian version. The reference 
control is fed into the dynamics of the real system, after 
passing though a saturation block, which enforces the 
following control bounds: 

n̂

 
Fig. 9: Simulink block scheme for the feedback control 

loop. 
 

 
 
 
0 0

2

T

l

T

u mT

   

   

u

u ax

 

For the feedback control loop, the mass state is 
completely neglected (there is no necessity to follow the 
reference mass), therefore the reference state vector is 

simply .    ,
T

t x r v
The control shall be designed such as to follow a 

time-varying reference in a non-linear system. 
Therefore, in principle, the gain matrix shall be time-
variant and designing using adaptive control theory. 
However, if we assume that the dynamics of the 
reference trajectory is slow enough, then we can 
approximate the time varying problem as a sequence of 
time-invariant problems, and use classic linear feedback 
control theory for computing the gain matrix. However, 
the optimal control problem shall be solved at each 
instant of time, and the gain matrix updated. The 
disadvantage of such a control method is that the gain 
matrix shall be computed in real-time, as a function of 
the current spacecraft state, with computational load on 
the spacecraft, and cannot be computed offline. 

We consider a generic instant of time t : from the 
trajectory design, it is known that at that time the 
spacecraft shall be at reference state  tx x  and with 

reference control  tu u . However, in general, the 

spacecraft will be at a state  with control . If we 
assume that the real state and control are not distant 
from the reference state and control, the dynamics of the 
CR3BP with control can be linearised around the 
reference state and control, in the following way: 

x u

      6 6 6 3
, ,

, ; ,
, ,T T T  

 
 
 x u x u

f f
A x u B x u

x
 

where the matrix  is computed differentiating only 
with respect to the controls that will be used (those 
related to the thruster). The derivatives can be computed 

B
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analytically offline starting from the expression of f, and 
then evaluated at a specific point. However their 
complete expression is omitted here for conciseness. 

Hence the dynamics of the system in the vicinity of 
,x u  can be expressed as: 

    x A x B u  (5) 

where   x x x  and  , , , ,
TT

T T T TT T        u  

represent the error with respect to the reference 
condition (see Fig. 10). 

In order for the control to be valid, the spacecraft 
shall be in the vicinity of the reference at any time (i.e. 
linear approximation). 

Within the linear dynamics, the problem is that of 
following a linearised time-varying reference trajectory, 
subject to the (linearised) dynamics given by Eq. (5). It 
can be proven that if the reference follows linear 
dynamics, then the optimal gain matrix is the same as in 
the case of a system pursuing 0 x , except that this 
time the transient is on the error with respect to the 
linearised dynamics of the reference, rather than on  x . 
However, in this case, since the linearisation is done 
around the reference, and it is updated at every instant 
of time, it results that the reference state corresponds to 

0 x  at any time. Therefore, pursuing null error is 
equivalent to 0 x . This can also be explained 
considering that the feedback control is responsible for 
tackling small excursions off the reference path, while 
the reference control is responsible for ensuring that the 
spacecraft follows the reference states. 

The optimal control problem to solve is the one of 
minimising the quadratic cost function: 

    
0

2T T TJ dt      


  u x Q x u R u x N u  (6) 

which aims at minimising the state error and the 
controls over an infinite amount of time, subject to the 
dynamics in Eq. (5). The matrices  are weights 

that quantify the relative cost of each state and control 
in the cost function. For this problem, considering the 
normalisation of the variables, by trial and error they 
were set to: 

, ,Q R N

   
6 6

33

6 3

1000

diag 1 1 10





 

   


Q I

R

N 0

The large number in  can be explained by the fact 
that the unit of force is small in the non-dimensional 
system (1 N is of the order of ). 

R

1810

Minimising Eq. (6) under the assumption of a 
control proportional to , as e   u K x

3 6K

, leads to the 
well known algebraic Riccati equation [27], which can 
be solved to compute the gain matrix  for . ,A B

This control is added to the reference, to find the 
total control to be applied: 

 

 
Fig. 10: Linearisation around the reference. 
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Fig. 11: Reference control for selected orbit. 
 

   0 0
T u u u

to force the spacecraft to follow the reference states. 
 

IV.I. Test cases 
We consider a North Pole observation mission in 

which the maximum distance of the payload from the 
Earth is constrained to 0.018 AUmaxd  . The spacecraft 

mass at injection into the orbit is  and the 

lightness number is 
0 10m 

0 0.05

00 kg

  , corresponding to a sail 

size of about 180 m × 180 m. The specific impulse of 
the thruster is 3200 s. 

 The optimal orbit for this spacecraft, which will be 
used as a reference, is represented in black in the 
following figures (see for example Fig. 12), and its 
reference control is in Fig. 11, split into angular 

Reference 

   ,t tx u 
Linearised dynamics 
of the reference 

O  

Linearisation 

around  tx  

 tx x  

 t x  
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components and thrust magnitude. The maximum thrust 
available from the SEP system is set to 0.15 NmaxT  . It 

was noted that the performances are very similar on the 
different orbits proposed in the preceding sections. 

We present three different scenarios in which the 
feedback control plays a fundamental role to guarantee 
the success of the mission.  

 
Injection Error 
In this first scenario, we hypothesise an injection 

error of the spacecraft into the pole-sitter orbit starting 
point. In other words, we consider a perturbed initial 
state (in position or velocity) at the winter solstice, and 
start propagating from that state. The aim is to assess 
the capability of the feedback control to bring the 
spacecraft to the reference orbit. 

It was found that the control is able to recover the 
spacecraft within 20,000 km and 20 m/s from the 
reference in less than 1 year if the initial displacement is 
less than 100,000 km in any direction (x, y or z), and 
less than 100 m/s in velocity (being more sensitive to 
variations of ). yv

Fig. 12 and Fig. 13 show respectively the cases of an 
injection error in position and velocity. In each figure, 
plot (a) shows the state error  x  with respect to the 
reference. This vector shall be driven to zero by the 
feedback control loop. Even if the mass state is not 
followed, it is plotted to show the gain or loss of mass 
with respect to reference conditions. Plot (b) shows the 
control history including the feedback. For sake of 
comparison, the reference control is also plotted in the 
same graph, as a dotted line. Finally, plot (c) represents 
the reference trajectory, the actual trajectory of the 
spacecraft and the trajectory of the spacecraft if no 
feedback control is used. 

The history of the error in the state vector with 
respect to the reference (a) shows the initial 
displacement of one component, then a transient period 
in which all the components are far from the reference, 
and finally settlement in its neighbourhood. 

Comparing thrust magnitude history (b) with the 
reference, it can be seen that an initial saturation of the 
thrust is necessary to bring the spacecraft back to the 
reference state. Also, oscillations around the reference 
thrust can be seen, even in the vicinity of the reference 
state, as is common in many feedback control loops. 

If the tests are repeated with increasing values of 
initial displacement (either position or velocity), the 
control saturates for a longer and longer time at the 
beginning of the orbit, and eventually even the saturated 
thrust is not enough to bring the spacecraft on-track and 
the trajectory diverges indefinitely from the reference. 

It is worth noting that an error in the injection does 
not necessarily translate into additional propellant 
consumption to recover the reference trajectory. 

 
Fig. 12: Initial error of 100,000 kmxr  . (a) State 

error. (b) Controls (dashed line is the reference). (c) 
Trajectory (Reference, without control and with 
control). 
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Fig. 13: Initial error of . (a) State error. 

(b) Controls (dashed line is the reference). (c) 
Trajectory (Reference, without control and with 
control). 

100 m/szv  

However, it always implies a transient trajectory that 
is not fulfilling the pole-sitter constraint, i.e. the 
spacecraft is not above the pole. 

2
x 10

5

Finally, the trajectory plot (c) clearly shows that, if 
no control were used, the spacecraft would not be able 
to track the reference, but instead would fall into an 
orbit around the Earth, or escape from it. 

 
Sail degradation 
In this case we assume that the spacecraft is injected 

correctly, but the actual sail reflectivity is reduced to 
0.8sr  . This can happen in case of unexpected 

wrinkles, or simply due to the degradation of the 
reflective material after some time. 

As it can be seen from Fig. 14, the thruster is able to 
compensate for the degradation of the sail, keeping the 
spacecraft in the vicinity of the reference. However, 
different from the case of error in the injection, the 
required thrust is constantly above the reference, and 
this translates into additional propellant consumption. 
For the considered degradation, the propellant needed is 
about 7.5 kg in the first year. This value can be lowered 
if a new reference optimal trajectory, or at least control 
law, could be redesigned taking into account the 
degraded solar sail. 

 
SEP failure 
This case involves a sudden, temporary failure of the 

SEP thruster. Also in this case the feedback control can 
bring back the spacecraft on-track, provided that the 
duration of the failure is below a certain limit, which 
depends on the position along the orbit. Table 4 reports 
the maximum failure duration in four different positions 
along the orbit. As expected, the most critical period is 
winter, in which the part of total acceleration provided 
by the SEP is highest. Here the SEP cannot be switched 
off for longer than 20 days, otherwise it would be 
impossible to recover the mission. In the summer 
solstice, instead, the failure time can go up to 35 days. 
These data refer to the first year of the mission. In the 
following years, the mass of the spacecraft is lower 
(while the thrust remains the same), and therefore it is 
expected an increase in these values. 

Fig. 15 shows one case of SEP failure. The period of 
20 days without thrust is visible in plot (a), and it is 
followed by about 35 days of full thrust to meet the 
reference orbit. 

 
Table 4: Maximum SEP failure duration. 

Starting epoch Maximum duration, d 
21 December (t = 0) 20 
21 March (t = π/2) 30 

21 June (t = π) 35 
21 September (t = 3π/2) 30 
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Fig. 14: Sail degradation: reflectivity reduced to 

. (a) State error. (b) Controls (dashed line is 

the reference). (c) Trajectory (Reference, without 
control and with control). 

0.8sr 

 
Fig. 15: SEP failure on 21 March (t = π/2), lasting for 20 

days. (a) State error. (b) Controls (dashed line is the 
reference). (c) Trajectory (Reference, without 
control and with control). 
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Note that even a failure of 20 days, as in figure, 
results in an additional mass consumption of only about 
1 kg (see Fig. 15c). In fact, the mass used to bring the 
spacecraft on track after the failure is almost completely 
compensated for by the mass saved during the engine 
failure. However, as before, during the transient the 
spacecraft is not precisely above the North Pole. 

V. CONCLUSION 
In this work, the hybridisation of solar electric 

propulsion (SEP) and solar sailing was proposed for a 
pole-sitter mission. In addition, a feedback control 
system was designed to keep the spacecraft on-track 
under unstable dynamics. 

Minimum fuel consumption pole-sitter orbits were 
presented using hybrid solar electric propulsion (SEP) 
and solar sail propulsion. A direct method based on 
pseudo-spectral discretisation was demonstrated to be 
reliable and suitable for this aim, guaranteeing fast 
convergence to the optimal solution. The combination 
of the two propulsion systems allows propellant saving 
over the pure SEP spacecraft, potentially enabling 
longer missions; at the same time, the presence of low-
thrust propulsion enables orbits that cannot be achieved 
with a pure sail. The analysis took into account free-
distance orbits, as well as orbits that constrain their 
distance from the Earth to meet possible payload 
requirements, at the cost of some propellant mass. 

The proposed feedback control proved that is 
possible to maintain the spacecraft in the reference 
condition, despite the instability of the natural 
dynamics, only by using the SEP thruster. Moreover, it 
was shown that very little variation on the reference 
thrust vector are enough to respond to large injection 
errors, and relatively long SEP failures. This allows 
keeping the sail on the reference attitude, and avoiding 
fast slew manoeuvres of the sail. 
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