Picture of person typing on laptop with programming code visible on the laptop screen

World class computing and information science research at Strathclyde...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by researchers from the Department of Computer & Information Sciences involved in mathematically structured programming, similarity and metric search, computer security, software systems, combinatronics and digital health.

The Department also includes the iSchool Research Group, which performs leading research into socio-technical phenomena and topics such as information retrieval and information seeking behaviour.

Explore

Preparation of Cu(In,Ga)Se-2 thin film solar cells by two-stage selenization processes using N-2 gas

Gremenok, VF and Zaretskaya, EP and Zalesski, VB and Bente, K and Schmitz, W and Martin, RW and Moller, H (2005) Preparation of Cu(In,Ga)Se-2 thin film solar cells by two-stage selenization processes using N-2 gas. Solar Energy Materials and Solar Cells, 89 (2-3). pp. 129-137. ISSN 0927-0248

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

The aim of this work is to study the dependence of the structural properties of Cu(In,Ga)Se-2 polycrystalline thin films prepared by a two-step selenization of co-evaporated metallic precursors in Se-containing environment under N-2 gas flow. Characterizations included studies of morphological features, formation of crystalline phases and the depth compositional uniformity of the final thin films. From these studies optimum growth parameters were determined for the preparation of: high-quality chalcopyrite thin films with structural and compositional properties suitable for solar cell applications. The formation and optoelectronic properties of glass/Mo/Cu(In,Ga)Se-2/CdS/ZnO/Al-Ni thin film solar cells are also reported. The better conversion efficiencies were around 8.0 (C) 2005 Elsevier B.V. All rights reserved.