Picture of a black hole

Strathclyde Open Access research that creates ripples...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of research papers by University of Strathclyde researchers, including by Strathclyde physicists involved in observing gravitational waves and black hole mergers as part of the Laser Interferometer Gravitational-Wave Observatory (LIGO) - but also other internationally significant research from the Department of Physics. Discover why Strathclyde's physics research is making ripples...

Strathprints also exposes world leading research from the Faculties of Science, Engineering, Humanities & Social Sciences, and from the Strathclyde Business School.

Discover more...

Optical properties of high-temperature annealed Eu-implanted GaN

Wang, K and Martin, RW and Nogales, E and Katchkanov, V and O'Donnell, KP and Hernandez, S and Lorenz, K and Alves, E and Ruffenach, S and Briot, O (2006) Optical properties of high-temperature annealed Eu-implanted GaN. Optical Materials, 28 (6-7). pp. 797-801.

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

A 10 nm thick epitaxially grown AIN cap has been used to protect the surface of a GaN epilayer both during Eu ion implantation and the subsequent high-temperature annealing. The 15 K photoluminescence (PL) intensity of the intra-4f Eu transition increases by two orders of magnitude when the annealing temperature is increased from 1000 to 1300 degrees C. High-resolution PL spectra reveal that the emission lines due to the D-5(0)-F-7(2) transition exhibit different dependencies on the annealing temperature in the studied annealing range. PL excitation measurements demonstrate band edge absorption by the GaN host at 356 nm, together with a broad excitation band centred at similar to 385 nm. The PL spectra of the D-5(0)-F-7(2) transition selectively excited by above band-gap absorption and by this broad excitation band are noticeably different. The first peak at 620.8 nm is suppressed when exciting below the GaN band gap. This demonstrates differing energy transfer processes for the different Eu luminescent peaks and is direct evidence for at least two kinds of different Eu sites in the host with distinct optical activation. Temperature dependent PL and PLE demonstrate that one of the two Eu-centres does not contribute to the room temperature luminescence. (c) 2005 Elsevier B.V. All rights reserved.