Picture of a black hole

Strathclyde Open Access research that creates ripples...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of research papers by University of Strathclyde researchers, including by Strathclyde physicists involved in observing gravitational waves and black hole mergers as part of the Laser Interferometer Gravitational-Wave Observatory (LIGO) - but also other internationally significant research from the Department of Physics. Discover why Strathclyde's physics research is making ripples...

Strathprints also exposes world leading research from the Faculties of Science, Engineering, Humanities & Social Sciences, and from the Strathclyde Business School.

Discover more...

Diagnostic exploitation of complex heavy elements in tokamak plasmas

O'Mullane, M.G. and Summers, H.P. and Whiteford, A.D. and Barnsley, R. and Coffey, I.H. and Counsell, G. and Loch, S. (2003) Diagnostic exploitation of complex heavy elements in tokamak plasmas. Review of Scientific Instruments, 74 (3). pp. 2080-2083. ISSN 0034-6748

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

In future burning plasma experiments, a promising method for the diagnosis of first wall erosion is to detect the onset of emission from nonintrinsic materials embedded in the plasma facing components as they are revealed and enter the confined plasma. Likely high Z species were introduced into the Joint European Torus plasmas by laser ablation. Results from targets of single species (W and Hf) and dual species (W/Hf composite) are presented. The composite target experiment has shown that it is possible to distinguish reliably between emission from near neighbor heavy elements, even with instrument resolutions of /~0.001. Forward prediction to power plant conditions necessitates a model of the complex spectra and a system for generating the required atomic data and producing spectral feature emissivity coefficients is described. An important consideration is to enable exploration of different instrumentation so the spectral resolution of the compound features are tuned to the diagnostic capability.