Picture of a black hole

Strathclyde Open Access research that creates ripples...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of research papers by University of Strathclyde researchers, including by Strathclyde physicists involved in observing gravitational waves and black hole mergers as part of the Laser Interferometer Gravitational-Wave Observatory (LIGO) - but also other internationally significant research from the Department of Physics. Discover why Strathclyde's physics research is making ripples...

Strathprints also exposes world leading research from the Faculties of Science, Engineering, Humanities & Social Sciences, and from the Strathclyde Business School.

Discover more...

Holistic engineering design : a combined synchronous and asynchronous approach

Conway, Alastair and Giess, M and Lynn, Andrew and Ding, L and Goh, Yee M and McMahon, Chris and Ion, William (2008) Holistic engineering design : a combined synchronous and asynchronous approach. In: ASME 2008 Design engineering technical conferences & computers and information in engineering conference, 2008-08-03 - 2008-08-06.

[img]
Preview
PDF
DETC2008_49340_FINAL.pdf - Preprint

Download (568kB) | Preview

Abstract

To aid the creation and through-life support of large, complex engineering products, organizations are placing a greater emphasis on constructing complete and accurate records of design activities. Current documentary approaches are not sufficient to capture activities and decisions in their entirety and can lead to organizations revisiting and in some cases reworking design decisions in order to understand previous design episodes. Design activities are undertaken in a variety of modes; many of which are dichotomous, and thus each require separate documentary mechanisms to capture information in an efficient manner. It is possible to identify the modes of learning and transaction to describe whether an activity is aimed at increasing a level of understanding or whether it involves manipulating information to achieve a tangible task. The dichotomy of interest in this paper is that of synchronous and asynchronous working, where engineers may work alternately as part of a group or as individuals and where different forms of record are necessary to adequately capture the processes and rationale employed in each mode. This paper introduces complimentary approaches to achieving richer representations of design activities performed synchronously and asynchronously, and through the undertaking of a design based case study, highlights the benefit of each approach. The resulting records serve to provide a more complete depiction of activities undertaken, and provide positive direction for future co-development of the approaches.