Picture of Open Access badges

Discover Open Access research at Strathprints

It's International Open Access Week, 24-30 October 2016. This year's theme is "Open in Action" and is all about taking meaningful steps towards opening up research and scholarship. The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs. Explore recent world leading Open Access research content by University of Strathclyde researchers and see how Strathclyde researchers are committing to putting "Open in Action".


Image: h_pampel, CC-BY

Optical spectroscopy of GaN microcavities with thicknesses controlled using a plasma etch-back

Martin, R.W. and Edwards, P.R. and Kim, H.S. and Kim, K.S. and Kim, T. and Watson, I.M. and Dawson, M.D. and Cho, Y. and Sands, T. and Cheung, N.W. (2001) Optical spectroscopy of GaN microcavities with thicknesses controlled using a plasma etch-back. Applied Physics Letters, 79 (19). ISSN 0003-6951

Martin2001APL79.pdf - Final Published Version

Download (121kB) | Preview


The effect of an etch-back step to control the cavity length within GaN-based microcavities formed between two dielectric Bragg mirrors was investigated using photoluminescence and reflectivity. The structures are fabricated using a combination of a laser lift-off technique to separate epitaxial III-N layers from their sapphire substrates and electron-beam evaporation to deposit silica/zirconia multilayer mirrors. The photoluminescence measurements reveal cavity modes from both etched and nonetched microcavities. Similar cavity finesses are measured for 2.0 and 0.8 mm GaN cavities fabricated from the same wafer, indicating that the etchback has had little effect on the microcavity quality. For InGaN quantum well samples the etchback is shown to allow controllable reduction of the cavity length. Two etch steps of 100 nm are demonstrated with an accuracy of approximately 5%. The etchback, achieved using inductively coupled plasma and wet chemical etching, allows removal of the low-quality GaN nucleation layer, control of the cavity length, and modification of the surface resulting from lift-off.