Strathprints Home | Open Access | Browse | Search | User area | Copyright | Help | Library Home | SUPrimo

Optical spectroscopy of GaN microcavities with thicknesses controlled using a plasma etch-back

Martin, R.W. and Edwards, P.R. and Kim, H.S. and Kim, K.S. and Kim, T. and Watson, I.M. and Dawson, M.D. and Cho, Y. and Sands, T. and Cheung, N.W. (2001) Optical spectroscopy of GaN microcavities with thicknesses controlled using a plasma etch-back. Applied Physics Letters, 79 (19). pp. 3029-3031. ISSN 0003-6951

[img]
Preview
PDF - Published Version
Download (118Kb) | Preview

    Abstract

    The effect of an etch-back step to control the cavity length within GaN-based microcavities formed between two dielectric Bragg mirrors was investigated using photoluminescence and reflectivity. The structures are fabricated using a combination of a laser lift-off technique to separate epitaxial III-N layers from their sapphire substrates and electron-beam evaporation to deposit silica/zirconia multilayer mirrors. The photoluminescence measurements reveal cavity modes from both etched and nonetched microcavities. Similar cavity finesses are measured for 2.0 and 0.8 mm GaN cavities fabricated from the same wafer, indicating that the etchback has had little effect on the microcavity quality. For InGaN quantum well samples the etchback is shown to allow controllable reduction of the cavity length. Two etch steps of 100 nm are demonstrated with an accuracy of approximately 5%. The etchback, achieved using inductively coupled plasma and wet chemical etching, allows removal of the low-quality GaN nucleation layer, control of the cavity length, and modification of the surface resulting from lift-off.

    Item type: Article
    ID code: 3002
    Keywords: optical spectroscopy, GaN microcavities, plasma etch-back, nanoscience, Solid state physics. Nanoscience, Physics and Astronomy (miscellaneous)
    Subjects: Science > Physics > Solid state physics. Nanoscience
    Department: Faculty of Science > Physics
    Faculty of Science > Institute of Photonics
    Related URLs:
      Depositing user: Strathprints Administrator
      Date Deposited: 12 Mar 2007
      Last modified: 04 Sep 2014 13:00
      URI: http://strathprints.strath.ac.uk/id/eprint/3002

      Actions (login required)

      View Item

      Fulltext Downloads: