Picture of person typing on laptop with programming code visible on the laptop screen

World class computing and information science research at Strathclyde...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by researchers from the Department of Computer & Information Sciences involved in mathematically structured programming, similarity and metric search, computer security, software systems, combinatronics and digital health.

The Department also includes the iSchool Research Group, which performs leading research into socio-technical phenomena and topics such as information retrieval and information seeking behaviour.

Explore

Electron-impact excitation of Xe26+ and its resultant spectral signature

Badnell, N.R. and Berrington, K.A. and Summers, H.P. and O'Mullane, M.G. and Whiteford, A.D. and Ballance, C.P. (2004) Electron-impact excitation of Xe26+ and its resultant spectral signature. Journal of Physics B: Atomic, Molecular and Optical Physics, 37 (23). pp. 4589-4601. ISSN 0953-4075

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

We have carried out a 129 close-coupling level Dirac-Coulomb R-matrix calculation for the electron-impact excitation of Ni-like Xe. We have utilized this data to generate the spectral signature of Xe26+ in terms of feature photon-emissivity coefficients F-P ECs. We have compared these F-P ECs with those generated using semi-relativistic plane-wave Born excitation data, which forms the heavy species baseline for the Atomic Data and Analysis Structure (ADAS). We find that the Born-based F-P ECs give a reasonable qualitative description of the spectral signature but that, quantitatively, the R-matrix-based F-P ECs differ by up to a factor of 2. The spectral signature of heavy species is key to diagnosing hot plasmas such as will be found in the International Thermonuclear Experimental Reactor.