Picture of wind turbine against blue sky

Open Access research with a real impact...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs.

The Energy Systems Research Unit (ESRU) within Strathclyde's Department of Mechanical and Aerospace Engineering is producing Open Access research that can help society deploy and optimise renewable energy systems, such as wind turbine technology.

Explore wind turbine research in Strathprints

Explore all of Strathclyde's Open Access research content

Relativistic plasma surfaces as an efficient second harmonic generator

Streeter, M. J. V. and Foster, P. S. and Cameron, F. H. and Borghesi, M. and Brenner, C. and Carroll, D. C. and Divall, E. and Dover, N. P. and Dromey, B. and Gallegos, P. and Green, J. S. and Hawkes, S. and Hooker, C. J. and Kar, S. and McKenna, P. and Nagel, S. R. and Najmudin, Z. and Palmer, C. A. J. and Prasad, R. and Quinn, K. E. and Rajeev, P. P. and Robinson, A. P. L. and Romagnani, L. and Schreiber, J. and Spindloe, C. and Ter-Avetisyan, S. and Tresca, O. and Zepf, M. and Neely, D. (2011) Relativistic plasma surfaces as an efficient second harmonic generator. New Journal of Physics, 13. ISSN 1367-2630

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

We report on the characterization of the specular reflection of 50 fs laser pulses in the intensity range 10(17)-10(21)Wcm(-2) obliquely incident with p-polarization onto solid density plasmas. These measurements show that the absorbed energy fraction remains approximately constant and that second harmonic generation (SHG) achieves efficiencies of 22 +/- 8% for intensities approaching 10(21)Wcm(-2). A simple model based on the relativistic oscillating mirror concept reproduces the observed intensity scaling, indicating that this is the dominant process involved for these conditions. This method may prove to be superior to SHG by sum frequency mixing in crystals as it is free from dispersion and retains high spatial coherence at high intensity.