Picture of wind turbine against blue sky

Open Access research with a real impact...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs.

The Energy Systems Research Unit (ESRU) within Strathclyde's Department of Mechanical and Aerospace Engineering is producing Open Access research that can help society deploy and optimise renewable energy systems, such as wind turbine technology.

Explore wind turbine research in Strathprints

Explore all of Strathclyde's Open Access research content

Prediction of serotypes causing invasive pseumococal disease in unvaccinated and vaccinated populations

Weinberger, Daniel M. and Harboe, Zitta B. and Flasche, Stefan and Scott, J. Anthony and Lipsitch, Marc (2011) Prediction of serotypes causing invasive pseumococal disease in unvaccinated and vaccinated populations. Epidemiology, 22 (2). pp. 199-207. ISSN 1044-3983

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

Before the introduction of the heptavalent pneumococcal conjugate vaccine (Prevnar-7), the relative prevalence of serotypes of Streptococcus pneumoniae was fairly stable worldwide. We sought to develop a statistical tool to predict the relative frequency of different serotypes among disease isolates in the pre- and post-Prevnar-7 eras using the limited amount of data that is widely available. Methods: We initially used pre-Prevnar-7 carriage prevalence and estimates of invasiveness derived from case-fatality data as predictors for the relative abundance of serotypes causing invasive pneumococcal disease during the pre- and post-Prevnar-7 eras, using negative binomial regression. We fit the model to pre-Prevnar-7 invasive pneumococcal disease data from England and Wales and used these data to (1) evaluate the performance of the model using several datasets and (2) evaluate the utility of the country-specific carriage data. We then fit an alternative model that used polysaccharide structure, a correlate of prevalence that does not require country-specific information and could be useful in determining the postvaccine population structure, as a predictor. Results: Predictions from the initial model fit data from several pediatric populations in the pre-Prevnar-7 era. After the introduction of Prevnar-7, the model still had a good negative predictive value, though substantial unexplained variation remained. The alternative model had a good negative predictive value but poor positive predictive value. Both models demonstrate that the pneumococcal population follows a somewhat predictable pattern even after vaccination. Conclusions: This approach provides a preliminary framework to evaluate the potential patterns and impact of serotypes causing invasive pneumococcal disease.