Picture of virus under microscope

Research under the microscope...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs.

Strathprints serves world leading Open Access research by the University of Strathclyde, including research by the Strathclyde Institute of Pharmacy and Biomedical Sciences (SIPBS), where research centres such as the Industrial Biotechnology Innovation Centre (IBioIC), the Cancer Research UK Formulation Unit, SeaBioTech and the Centre for Biophotonics are based.

Explore SIPBS research

Carbon ion acceleration from thin foil targets irradiated by ultrahigh-contrast, ultraintense laser pulses

Carroll, D. C. and Tresca, O. and Prasad, R. and Romagnani, L. and Foster, P. S. and Gallegos, P. and Ter-Avetisyan, S. and Green, J. S. and Streeter, M. J. V. and Dover, N. and Palmer, C. A. J. and Brenner, C. M. and Cameron, F. H. and Quinn, K. E. and Schreiber, J. and Robinson, A. P. L. and Baeva, T. and Quinn, M. N. and Yuan, X. H. and Najmudin, Z. and Zepf, M. and Neely, D. and Borghesi, M. and McKenna, P. (2010) Carbon ion acceleration from thin foil targets irradiated by ultrahigh-contrast, ultraintense laser pulses. New Journal of Physics, 12. 045020. ISSN 1367-2630

Full text not available in this repository. (Request a copy from the Strathclyde author)


In this study, ion acceleration from thin planar target foils irradiated by ultrahigh-contrast (10(10)), ultrashort (50 fs) laser pulses focused to intensities of 7 x 10(20) W cm(-2) is investigated experimentally. Target normal sheath acceleration (TNSA) is found to be the dominant ion acceleration mechanism when the target thickness is >= 50 nm and laser pulses are linearly polarized. Under these conditions, irradiation at normal incidence is found to produce higher energy ions than oblique incidence at 35 degrees with respect to the target normal. Simulations using one-dimensional (1D) boosted and 2D particle-in-cell codes support the result, showing increased energy coupling efficiency to fast electrons for normal incidence. The effects of target composition and thickness on the acceleration of carbon ions are reported and compared to calculations using analytical models of ion acceleration.