Picture of athlete cycling

Open Access research with a real impact on health...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by Strathclyde researchers, including by researchers from the Physical Activity for Health Group based within the School of Psychological Sciences & Health. Research here seeks to better understand how and why physical activity improves health, gain a better understanding of the amount, intensity, and type of physical activity needed for health benefits, and evaluate the effect of interventions to promote physical activity.

Explore open research content by Physical Activity for Health...

Accessibility of the resources of near Earth space using multi-impulse transfers

Sanchez, J.P. and McInnes, Colin R. (2010) Accessibility of the resources of near Earth space using multi-impulse transfers. In: 2010 AIAA/AAS Astrodynamics Specialist Conference, 2010-08-02 - 2010-08-05.

[img]
Preview
PDF (Sanchez_JP_-_strathprints_-_Accessibility_of_the_resources_of_near_Earth_space_using_multi-impulse_transfers_Aug_2010.pdf)
Sanchez_JP_-_strathprints_-_Accessibility_of_the_resources_of_near_Earth_space_using_multi-impulse_transfers_Aug_2010.pdf

Download (1MB) | Preview

Abstract

Most future concepts for exploration and exploitation of space require a large initial mass in low Earth orbit. Delivering this mass requires overcoming Earth's natural gravity well, which imposes a distinct obstacle to space-faring. An alternative for future space progress is to search for resources in-situ among the near Earth asteroid population. This paper examines the scenario of future utilization of asteroid resources. The near Earth asteroid resources that could be transferred to a bound Earth orbit are determined by integrating the probability of finding asteroids inside the Keplerian orbital element space of the set of transfers with an specific energy smaller than a given threshold. Transfers are defined by a series of impulsive maneuvers and computed using the patched-conic approximation. The results show that even moderately low energy transfers enable access to a large mass of resources.