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Most future concepts for exploration and exploitation of space require a large initial 

mass in low Earth orbit. Delivering this mass requires overcoming Earth’s natural gravity 

well, which imposes a distinct obstacle to space-faring. An alternative for future space 

progress is to search for resources in-situ among the near Earth asteroid population. This 

paper examines the scenario of future utilization of asteroid resources.  The near Earth 

asteroid resources that could be transferred to a bound Earth orbit are determined by 

integrating the probability of finding asteroids inside the Keplerian orbital element space of 

the set of transfers with an specific energy smaller than a given threshold. Transfers are 

defined by a series of impulsive maneuvers and computed using the patched-conic 

approximation. The results show that even moderately low energy transfers enable access to 

a large mass of resources. 

Nomenclature 

a = semi-major axis of an orbit, AU  

b = exponent parameter of power law size distribution, 2.354 

C = constant parameter of power law size distribution, 942 

D = asteroid diameter, km or m  

e = eccentricity of an orbit 

f = portion of material with {a,e,i} capturable with an insertion v lower than a given limit 

H = absolute magnitude 

h = percentage of {a,e,i}-orbits that can be phased with the Earth with a v lower than a limit 

i = inclination of an orbit, deg 

m = mass of the asteroid, kg 

M = mean anomaly of an orbit, deg 

M[Du-Dlo]= total asteroid mass between upper and lower diameter, kg 

MOIDcap= maximum MOID at which a perigee insertion is possible with a given maneuver, AU. 

N = number of asteroids 

p = semi-latus rectum of an orbit, AU 

P = probability of finding an capturable asteroid within a volume in Keplerian element space {a,e,i} 

ra = apoapsis altitude, AU 

renc = distance from the Sun of the intersection point, AU 

rp = periapsis altitude, AU 

et  = time at the encounter or intersection point, s  

mt  = time of the phasing maneuver, s  
enc

nv  = normal Cartesian component of the orbital velocity at the intersection point, AU/s
 

enc

rv  = radial Cartesian component of the orbital velocity at the intersection point, AU/s 

plXv  = asteroid velocity at the Earth plane crossing point, AU/s
 

0v  = orbital velocity of the asteroid, AU/s 

                                                           
*
 jpau.sanchez@strath.ac.uk, member AIAA, Research Fellow, Advanced Space Concepts Laboratory, Department 

of Mechanical Engineering, University of Strathclyde, Glasgow 
†
 colin.mcinnes@strath.ac.uk , member AIAA, Professor, Advanced Space Concepts Laboratory, Department of 

Mechanical Engineering, University of Strathclyde, Glasgow 

mailto:jpau.sanchez@strath.ac.uk


v = hyperbolic excess velocity, AU/s 

∆i = inclination change of the asteroid, deg  

∆M = difference in mean anomaly of the asteroid, deg  

∆n = change of asteroid mean motion, rad/s 

v  = increment of velocity 

incv  = impulsive v to change asteroid inclination, AU/s 

capv  = v for final Earth capture, AU/s 

∆vlev = delta-velocity-v∞ leveraging maneuver, AU/s 

.thresv  = maximum allowed v, AU/s 

a  = semi-major axis change due to an impulse maneuver, AU 

tv  = tangential impulse provided by phasing maneuver, AU/s 

α = flight path angle, rad or deg
 

  = true anomaly of an orbit, rad or deg 

enc  = true anomaly of the intersection point, rad or deg 

  = gravitational constant of the Earth, 1.19069x10
-19

AU
3
/s

2 

Sun  = gravitational constant of the Sun, 3.96438x10
-14

AU
3
/s

2 

 .  = probability density function 

a  = asteroid density, kg/m
3 

  = argument of the ascending node of an orbit, rad or deg 

  = argument of the perigee of an orbit, rad or deg 

   = Earth‟s mean angular velocity, rad/s 

ωMOID0= periapsis argument at which MOID is zero 

Suffixes: 

|  = referent to Earth 

max|  = maximum value allowed 

min|  = minimum value allowed 

Acronyms: 

MOID =  Minimum Orbital Intersection Distances 

NEA =  Near Earth Asteroid 

I. Introduction 

ost of the plausible futures for human space exploration and exploitation involve a large increase of mass in 

Earth orbit. Examples include space solar power, space tourism or more visionary human space settlements. 

Whether this mass is water for crew, propellant for propulsion or materials for structures, these resources will 

require overcoming Earth‟s natural gravity well to be delivered in space. Thus, even if technologically possible, this 

will certainly put a large economic burden to future space progress. An alternative to this approach is to search 

among the population of asteroids in search of the required reservoir of material
1
. 

 Asteroids are of importance in uncovering the formation, evolution and composition of the solar system. In 

particular, near Earth asteroids (NEA) have rose in prominence because of two important points: they are among the 

easiest celestial bodies to reach from the Earth and they may represent a long-term threat
2
. The growing interest in 

these objects has translated into an increasing number of missions to NEA, such as the sample return missions 

Hayabusa
3
 and Marco Polo

4
, impactor missions such as Deep Impact

*
 and possible deflector demonstrator missions 

such as Don Quixote
†
. 

 With regard to asteroid deflection, a range of methods have been identified to provide a change in the asteroid 

linear momentum
5
. Some of these methods, such as the kinetic impactor have been deemed to have a high 

technology readiness level (TRL), while others may require considerable development. If the capability to impact an 

asteroid exists (e.g., Deep Impact), or if the capability to deflect an asteroid is available in the near future, a 
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resource-rich asteroid could in principle be maneuvered and captured into a bound Earth orbit through judicious use 

of orbital dynamics. On the other hand, if direct transfer of the entire NEA is not possible, or necessary, extracted 

resources could also be transferred to a bound Earth for utilization. It is envisaged that NEA could also be 

„shepherded‟ into easily accessible orbits to provide future resources. 

 The main advantage of asteroid resources is that the gravity well from which materials would be extracted is 

much weaker than that of the Earth or the Moon. Thus, these resources could in principle be placed in a weakly-

bound Earth orbit for a lower energy cost than material delivered from the surface of the Earth or Moon. The 

question that arises then is how much near-Earth asteroid material is there which can be captured with a modest 

investment of energy. This paper will attempt to answer this question by analyzing the volume of Keplerian orbital 

element space from which Earth can be reached under a certain energy threshold and then mapping this analysis to 

the existing near Earth asteroid population. The resulting resource map provides an accurate assessment of the real 

material resources of near Earth space as a function of energy investment. It will be shown that there are substantial 

materials resources available at low energy based on the statistical distribution of near Earth asteroids.    

 The population of near-Earth objects is modeled in this paper by means of an object size distribution together 

with an orbital elements distribution function. The size distribution is defined via a power law relationship between 

the asteroid diameter and the total number of asteroids with size lower than this diameter
6
. On the other hand, the 

orbital distribution used in this paper will rely on Bottke et al.
7
 asteroid dynamic model to estimate the probability to 

find an object with a given set of Keplerian elements.  

The dynamic model used to study the Keplerian orbital element space {a,e,i} of asteroid-to-Earth transfers 

assumes a circular Earth orbit with a 1 AU semi-major axis. The Sun is the central body for the motion of the 

asteroid, and the Earth‟s gravity is only considered when the NEA motion is in close proximity. Since the orbital 

transfers will be modeled as a series of impulsive changes of velocity, for some conditions, analytical formulae 

relate the total change of velocity with the region of Keplerian space that can be reached. If no analytical formulae 

were found, a root finding algorithm is used to delimit the hyper-volume of Keplerian space that is feasibly 

exploited under a given delta-velocity budget. 

Three different transfer models were included in this paper. First, a phase-free fully analytical two-impulse 

transfer, which is composed by a change of plane maneuver and a perigee capture burn at Earth encounter. This 

transfer, like with a Hohmann transfer analysis, provides a good conservative estimation of the exploitable asteroid 

material.  Second, a phase-free analytical one-impulse transfer, which only considers a perigee capture burn during 

the Earth fly-by. In this second case, only orbits that have initially very low Minimum Orbital Intersection Distances 

(MOID) can be captured. The MOID is the minimum possible distance between the Earth and the asteroid 

considering free-phasing for both objects. Finally, three impulses will also be considered as a semi-analytical 

transfer, allowing us reaching asteroid material that is not Earth-crossing, as well as, reducing the cost of the Earth 

insertion maneuver using the delta-velocity-v∞ leveraging technique
8
. 

II. Near-Earth Asteroid Model 

In order to determine the resource availability for future asteroid exploitation, a reliable statistical model of the 

near Earth asteroid population is required. The following section describes an asteroid model of the fidelity required 

for the subsequent analysis. The asteroid model described is composed of two parts; a size population model, which 

describes the net number of asteroids as a function of object size and an orbit distribution model that describes the 

likelihood that an asteroid will be found in a given region of orbital element space.     

A. Near Earth Asteroid Population 
The near Earth asteroid population used is taken from the Near-Earth Object Science Definition report

6
. It is 

based on the results of a substantial number of studies estimating the population of different ranges of object sizes 

by a number of techniques (see Figure 1 taken from Stokes et al.
6
). The Near-Earth Object Science Definition report 

provides an accumulative population of asteroids that can be expressed as a constant power law distribution function 

of object diameter as: 

 ( [ ]) bN D km CD   (1) 

where 942C  and 2.354b  (ref.6). This constant power law distribution assumes that the average 1km diameter 

object has an absolute magnitude H=17.75.  

 



 
Figure 1. Accumulative size distribution of Near Earth Objects (from Stokes et al.

6
).

  

Assuming a population of asteroids defined by a power law distribution such as Eq.(1), one can easily calculate 

the total number of objects within an upper and lower diameter: 

    min max min max

b bN D D D C D D      (2) 

where Dmax and Dmin are the maximum and minimum diameter chosen. An estimation of the total asteroid mass 

composed by all these objects can also be computed. To do so, the following integration needs to be performed: 
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where m is the mass of the asteroid and 
minDN and 

maxDN are the number of objects bigger than Dmin and Dmax 

respectively.  

Assuming that all asteroids have a spherical shape and an average density a , the mass m of the asteroid can be 

defined by   36 a D    and the integration can be defined as an integration over the asteroid diameter: 
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where dN dD  is the derivative of Eq. (1) with respect D. Integrating Eq. (4), the total mass of asteroid material 

composed of asteroids with diameters between Dmax and Dmin results in: 
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The average asteroid density a can be approximated as 2600 kg/m
3 

(ref.9). Thus, for example, Eq. (20) can yield 

the total mass of “Tunguska” size objects (i.e., from 50 m to 70 m diameter) in the near Earth space as being in the 

order of 10
14 

kg
10

. If the maximum diameter is set equal to the largest near Earth object known, 1036 Ganymed, 

which is 32 km in diameter and the minimum object size is set at 1 meters diameter, then Eq. (5) yields a total mass 

4.38x10
16 

kg. This should be, approximately, the total mass of asteroid material available in near Earth orbital space. 

It is still necessary to define the energy requirements for transporting this material to Earth orbit in order to draw 

conclusions concerning practical resource availability. 



B. Near Earth Asteroid Orbital Distribution 

The present section describes the NEA orbital distribution model used to estimate the likelihood of finding an 

asteroid within a given volume of Keplerian space  , , , , ,a e i M      . This likelihood can also be interpreted 

as the fraction of asteroids within the specified region of the Keplerian space, and thus, if multiplied by Eq.(5), 

results in the portion of asteroid mass within that region. Hence, the ability of calculating this likelihood, together 

with the ability of defining the regions of the Keplerian space from which the Earth can be reached with a given ∆v 

budget, will later allow us to compute the asteroid resources available in the near-Earth space.  

The NEA orbital distribution used here is based on an interpolation from the theoretical distribution model 

published in Bottke et al.
7
. The data used was very kindly provided by W.F. Bottke (personal communication, 

2009). Bottke et al.
7
 built an orbital distribution of NEA by propagating in time thousands of test bodies initially 

located at all the main source regions of asteroids (i.e., the ν6 resonance, intermediate source Mars-crossers, the 3:1 

resonance, the outer main belt, and the transneptunian disk). By using the set of asteroids discovered by Spacewatch 

at the time, the relative importance of the different asteroid sources could be best-fitted. This procedure yielded a 

steady state population of near Earth objects from which an orbital distribution as a function of semi-major axis a, 

eccentricity e and inclination i can be interpolated numerically.  

The remaining three Keplerian elements, the right ascension of the ascending node Ω, the argument of periapsis 

ω and the mean anomaly M, are assumed here uniformly distributed random variables. The ascending node Ω and 

the argument of periapsis ω are generally believed to be uniformly distributed in near Earth orbital space
11

 as a 

consequence of the fact that the period of the secular evolution of these two angles is expected to be much shorter 

than the life-span of a near Earth object
12

. Therefore, we can assume that any value of Ω and ω is equally possible 

for any NEA. All values of mean anomaly M are also assumed to be equally possible, and thus M is also uniformly 

distributed between 0 to 2π.  

A probability density function  , ,a e i  has been created by linearly interpolating a 3-dimensional set of data 

containing the probability density at semi-major axis ranging from 0.05 to 7.35 AU with a partition step size of 0.1 

AU, eccentricity ranging from 0.025 to 0.975 with a partition step of 0.05 and inclination ranging from 2.5 to 87.5 

deg with a partition step of 5 deg. When  , ,a e i
 
requires a value outside the given grid of points (e.g., inclination 

less than 2.5 degrees) then a nearest neighbor extrapolation is used for the dependence in semi-major axis and 

eccentricity, while a linear extrapolation is used for the dependence in inclination. Figure 2 shows both the 

 , ,a e i projected in the {a,e} plane and the Aten, Apollo and Amor regions. 

 

Figure 2. Bottke et al.
7
  , ,a e i  probability distribution built as an interpolation from the model data 

projected in the {a,e} plane. 



Finally, an integration such as: 

  
max max max

min min min

, ,
a e i

a e i
P a e i di de da       (6) 

yields the probability to find an asteroid within the Keplerian elements defined by 
max min[ , ]a a , 

max min[ , ]e e  and 

max min[ , ]i i .  Section III will later describe how these limits can be defined as a function of the delta-velocity budget 

for different transfer types. The integration of a region of the Keplerian space, by means of Eq.(6), and multiplying 

this result by Eq.(2)  provides a good estimation of the number of objects with diameters between 
max min[ , ]D D  that 

should be found within that region:  

         expected min max min max min max min max, , , , ,N P a a e e i i N D D D     (7) 

 When Bottke et al.
7
  model was under development only 1000 near Earth objects were known, by 15th April 

2010, about 7000 objects have been surveyed. The NEA distribution model can then be tested by comparing the 

prediction of Eq.(7) against the real population. When doing so, care must be taken in comparing our expected 

population only with the fraction of the surveyed population that is complete or almost completed. The census of 

small asteroids (< 1km), which is not completed yet, suffers from observational effects (i.e., objects in orbits that 

can be more easily spotted are first discovered),  and this implies that only the census of objects that are almost 

completed should be compared with the NEA distribution model. Eq.(1) foresees 861 objects bigger than 1 km 

diameter, currently there are 847 known objects with H≤17.75, i.e., mean absolute magnitude of objects larger than 

1km diameter. We then regard the survey of objects larger than 1 km diameter as almost finished, and therefore with 

little observation bias. Table 1 compares the observed population of asteroids with the expected population of NEA, 

calculated by means of Eq.(7). The table shows some difference in each one of the Keplerian regions checked, but in 

general the expected population matches pretty well the observed NEA and the differences can be regarded as 

statistical deviations from the mean. 

Table 1. Comparison between NEA model predictions and surveyed population of asteroids larger than 1 km 

 Expected Observed Difference 

 H≤16 H≤17.75 H≤16 H≤17.75 H≤16 H≤17.75 

Total Asteroids 129 861 184 847 -30% ~ 

Low Inclination       

<1
 
deg ~1 ~7 1 3 0% 133% 

<5
 
deg ~10 ~68 13 65 -23% 5% 

<10
 
deg ~31 ~205 41 213 -24% 2% 

<20
 
deg ~69 ~455 84 421 -18% 8% 

v∞       

<5
 
km/s ~0 ~0 0 0 ~ ~ 

<10
 
km/s ~3 ~20 1 15 200% 33% 

<20
 
km/s ~32 ~211 31 177 3% 19% 

III. Asteroid Material Transfer 

This section will now describe the methodology followed to map the volume of Keplerian space where capture 

of asteroid resources is deemed feasible. This is the final element, which together with the NEO model described in 

section II, provides the means to calculate the available asteroid mass for resource exploitation in the near-Earth 

orbital space. Several transfer types will be considered here, all of them using multi-impulsive trajectories. 

 The first transfer considered is a two-impulse trajectory. This transfer assumes that intersection with the Earth 

orbit occurs only if Earth and asteroid are moving on the same plane, and thus, the first maneuver aims to provide 

the required change on the asteroid orbital plane. With both objects in the same plane, two crossing points are 

ensured to exist, if orbits actually “cross” (i.e., asteroid perihelion < 1AU and aphelion > 1AU). Assuming also a 

correct orbital phasing between the two objects, the asteroid would meet the Earth at one of the orbital crossing 

points. A second maneuver then provides the velocity change necessary to insert the asteroid into a weakly-bound 

Earth orbit (i.e., parabolic orbit) during the periapsis passage of the Earth fly-by. This simple model is particularly 

helpful to provide conservative estimates of capturable mass. 



 We can also consider the possibility of a single-impulse capture. Even if the asteroid and the Earth have no 

coplanar motion, asteroid capture would be possible in one single burn if the geometry of the orbits is such that the 

asteroid‟s MOID is smaller than the sphere of influence of the Earth. If this geometry occurs one single maneuver 

provided at the perigee passage may suffice to capture the asteroid in an Earth-bound orbit. Finally, a three-

impulse transfer will also be described. This type of transfer provides access to resources in the non-Earth-crossing 

Keplerian region and, at the same time, can reduce the v capture requirement of Earth crossing asteroids. The latter 

type of maneuver is generally refer as delta-velocity-v∞ leveraging transfer
8
. 

All these transfer models will be described as phase-free transfers. This means that the real orbital position is not 

taken into account, but only the geometry of the orbits is considered. Clearly, in order for an asteroid to meet the 

Earth during its orbital motion, not only the MOID must be very small (i.e., geometric consideration), but also the 

position of the Earth and the asteroid inside their mutual orbits must be very precise. Thus, an additional maneuver 

will be considered in order to provide the gentle push necessary to render the required phasing at the MOID.  

A. Two-impulses method 

On this model and in any other transfer model in the paper, it will be assumed that the motion of the asteroid, or 

any material resources extracted, is dominated by the gravitational influence of the Sun. The Earth is assumed to be 

in a circular orbit with radius 1 AU. When the asteroid has a close encounter with the Earth, the motion will be 

dominated by the Earth‟s influence in a patched-conic approximation.  

 

Figure 3. Orbital geometry of the coplanar model. 

As shown in Figure 3, an Earth-crossing coplanar asteroid has two intersections (points of MOID equal 0) with 

the Earth‟s orbit. These are found when the asteroid is at 1AU from the Sun. Since the distance r from the Sun to the 

asteroid is known, the equation of the orbit in polar coordinates yields the true anomaly of the two encounters θenc: 

 
1 1

cos
enc

p

e


 
 

 
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      (8) 

where 2
(1 )p a e   is the asteroid‟s semi-latus rectum and the unit length in Eq.(8), and any of the following 

formulas in this paper, has been normalized to 1AU.   

With the true anomaly of the encounter θenc known, the velocity at the encounter can now be defined by using 

normal and radial components of a Keplerian orbital motion: 

  sin
enc Sun

r enc
v e

p


  (9) 
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enc Sun
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v e

p


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where  
enc

r
v  and  

enc

n
v are the radial and normal velocity at the MOID point. Using Eq. (8) and Eqs.(9)-(10), the 

encounter velocity can be rewritten in a more suitable form: 

Asteroid‟s Orbit 

1A.U.
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Earth‟s Orbit 
M
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enc
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enc Sun

r
v e p

p
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n Sun
v p  (12) 

Whenever the Earth-coplanar asteroid meets the Earth at θenc, the velocity of the asteroid relative to the Earth 

will then be  ,
enc enc

r n enc
v v r


   with the Earth moving at an angular velocity: 

 
3

Sun

a






   or 
Sun

   since 1a

 AU (13) 

1. Change of Plane 

The first impulsive maneuver in this capture sequence provides the change of plane necessary to make the 

asteroid orbit coplanar with the Earth. Using a more complex and realistic sequence of maneuvers, a single 

combined maneuver could provide both the required phasing and the change of plane such that an Earth flyby 

occurs. In that case, the asteroid transfer to Earth would not need to be strictly coplanar with the Earth and the 

change of velocity necessary for the maneuver would be minimized. Unfortunately, this procedure would require a 

full numerical optimization for each individual case, which would be unmanageable for the scope of this paper.  

A simpler approach is to consider a change of plane maneuver such as: 

 2 sin( )
2

inc plX

i
v v


    

(14)
 

where incv is the impulsive change of velocity necessary to change the orbital plane by ∆i, and 
plXv is the velocity 

of the asteroid at the Earth orbit plane crossing. Equation (14) allows a more analytical approach to the problem and 

at the same time provides a worst case scenario for the cost of the change of plane.   

The velocity of the asteroid at the Earth crossing plane 
plXv will vary with the geometry and orientation of the 

asteroid orbit, i.e., a and e, and argument of the periapsis ω. As it has been previously discussed, the asteroid 

population model assumes that the argument of the periapsis ω behaves as a stochastic variable. As a consequence, 

and since the purpose of this model is to assess the asteroid resources that could be captured at the Earth, 
plXv  is 

defined as the velocity of the asteroid at its semi-latus rectum p, which again yields the worst case scenario for the 

change of plane maneuver for each orbital geometry. By doing so, Eq. (14) becomes a function only of the semi-

major axis a, eccentricity e and inclination i of the asteroid and can be written as: 

 22 1 sin( )
2

Sun

inc

i
v e

p

 
   

                                                              
(15) 

2. Final Earth Insertion 

If MOID is zero or almost zero, the Earth encounter could be easily tuned by a phasing maneuver so that the 

altitude during the Earth fly-by is some given minimum distance (chosen here to be 200km) above the Earth‟s 

surface. At this minimum altitude a final insertion maneuver could be performed. Clearly, for large NEA there 

would be an issue of impact hazard to be considered, however for smaller bodies this hazard can be mitigated since 

bodies of tens of meters of diameter should completely ablate in the atmosphere
13

. Thus, bodies in the order of 10 

meters diameter may be considered as perfect targets for first capture demonstrator missions. 

A parabolic orbit is assumed here to be the threshold between an Earth-bound orbit and an Earth escape orbit. 

Hence, the ∆v necessary for an Earth capture 
cap

v  at the perigee passage results on: 
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where v
  

is the hyperbolic excess velocity and rp is the pericenter altitude. As described at the beginning of section 

III.A, the hyperbolic excess velocity is defined by the relative Earth encounter velocity  ,
enc enc

r n enc
v v r


   and is 

therefore: 
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since enc
r is equal to 1 using distance units in astronomical units. Considering that the Earth angular velocity  is 

Sun
  for a circular orbit of radius of 1 AU and using simple arithmetic manipulation, Eq.(17)  can be simplified to: 

  2 13 2
Sun

v p
a



    (18) 

which is in fact the Tisserand Criterion for the case of ecliptic orbits and fly-by distance at 1 AU. 

3. Keplerian Feasible Regions 

Given equations (15) and (16), we can now easily estimate the ∆v budget necessary to transfer/capture asteroid 

material to/at Earth from a given {a,e,i} region, ∆v=∆vinc+∆vcap. These two equations can be rearranged so that they 

yield the Keplerian regions within which capture of asteroid resources is ensured to be bellow a given threshold 

∆vthreshold. Figure 4 shows the Keplerian region in the plane {a,e} where asteroid resources can be transfer to Earth 

with a total ∆v equal or lower than 2.37 km/s. This ∆v corresponds to the Moon‟s escape velocity, thus offering a 

direct comparison between material available at the Moon and within an equivalent energy threshold elsewhere in 

the solar system.  Also, superimposed in the figure are almost 5,000 asteroids (tiny dots and small crosses), which 

had been surveyed by April 2010.  

 

 
 Figure 4 shows three different lines (solid, dash-dotted and dotted line) delimiting an area in the {a,e} plane. The 

solid line results from expressing Eq.(16) as an explicit function of the semi-major axis a and  vcap necessary for an 

Earth capture: 
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            (19) 

Equation (19) therefore yields the value of eccentricity for which an asteroid with semi-major axis a can be 

captured with a maneuver ∆vcap at the perigee passage.  Asteroids with semi-major axis a, but eccentricity lower 

than the result provided by Eq.(19) should be captured with a maneuver lower than capv . Thus, if capv is set to the 

maximum allowed maneuver
threshold

v , the eccentricity resulting from Eq. (19) is also the maximum allowed 

eccentricity,  max ,thresholde e v a  . 

Eccentricities lower than emax require lower ∆v maneuvers to be captured at the Earth, but there is a geometrical 

limit to the minimum Earth insertion maneuver capv .The minimum capv  occurs when the encounter geometry is 
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Figure 4. Keplerian {a,e} space reached by a maneuver of 2.37 km/s (i.e., Moon’s escape velocity). 

Superimposed are all near Earth asteroids known within the {a,e} space as of April 2010. 



such that the intersection is at the line of apsis. With this geometry only one intersection point exists, and lower 

eccentricities imply orbits with no Earth crossing points (see Figure 4). The minimum allowed eccentricity for an 

orbit with semi-major axis a is therefore: 
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 (20) 

so that, if 1a  ,the periapis radius is 1 (see dotted line in Figure 4), and, if instead 1a  ,the apoapsis is 1 (see dash-

dotted line in Figure 4). 

Once the analytical expressions for the maximum and minimum eccentricity emax and emin are known, the 

maximum and minimum allowed semi-major axis a can be computed by finding when    max min
,thresholde ev a a

 
occurs. The latter equation results in a second degree polynomial with the following two solutions: 
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where 
2v  is defined as in Eq.(19). 

 Inside this delimited area within the {a,e} Keplerian space, we can ensure that the coplanar capture maneuvers 

will be lower than the limit threshold.  Thus, the reminder impulse, ∆v=∆vthreshold-∆vcap(a,e), can be used for 

changing the plane of any available objects as described in section III.A.1. Rearranging Eq.(15), the maximum 

object‟s inclination that can be modified and set into a coplanar motion with the Earth results:  
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Finally, any object within the Keplerian volume defined by equations (19) to (22) will require a total ∆v lower 

than the limit threshold and some ∆v budget will still be available for phasing.  Note that two types of symbols were 

used in Figure 4 to represent the surveyed asteroids. The small crosses represent all those objects that fall inside the 

volume calculated by the limits previously described when the Moon‟s escape velocity is used as ∆vthreshold. Thus, 

dots falling inside the area delimited in Figure 4 have inclinations larger than the result of equation (22). As shown 

in the figure, a considerable number of surveyed objects have orbits from which material could be transferred to the 

Earth with a lower energy requirement than from the surface of the Moon. It is also important to remark that by 

April 2010 only the survey of objects larger than 1 km diameter is virtually completed, while less than 0.1% of the 

objects between 30 and 300 meters are known. Hence, an important portion of objects are still to be discovered.   

B. One-impulse method 
As shown in Figure 3, if the asteroid is coplanar with the Earth orbit, two orbital crossing points will always 

exist, as long as the periapsis and apoapsis of the asteroid‟s orbit are smaller and larger than 1 AU, respectively. On 

the other hand, if the asteroid is not coplanar with the Earth orbit, only specific values of the angle of the periapsis ω 

will render an orbital intersection or a MOID small enough for a capture to be possible (see Figure 5).  



 

Figure 5. Representation of all possible orientations of an orbit as a function of argument of the periapsis ω. 

The figure shows two orbital planes, one for the Earth orbit and one for the asteroid orbit. By continuously 

changing the argument of the periapsis, all possible orientations of the asteroid orbit in the plane are yielded. The 

two crosses mark the Earth orbital crossing points which are possible only for four different values of the argument 

of the periapsis ω. Two arrows show the argument of the periapsis ω for one of the four configurations. 

As shown by Figure 5, only 4 specific values of ω yield a MOID equal to zero (i.e., an intersection between the 

two orbits). Except if the semilatus rectum p is equal to 1, in which case there will be only two values of ω yielding 

two simultaneous crossing points. Equation (8) already provided the two possible true anomalies that give the 

asteroid a distance of 1AU from the Sun. Therefore, for the orbital intersection to occur in the non-ecliptic asteroid 

case, one of these two angles is required to coincide with the line of nodes, i.e., the straight line where the two 

orbital planes meet. This yields four different arguments of the periapsis ω for which the MOID is 0: 

  0MOID enc enc enc enc           (23) 
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ŷ

 x f  

O

 

Figure 6. Set of coordinates used to compute Eq.(24).  

Close to the values of ωMOID0, the variation of MOID as a function of periapsis argument can be approximated 

linearly
12, 14

. With the axis shown in Figure 6, the motion of the Earth and the asteroid can be well described using a 

linear approximation of the Keplerian velocities of the two objects for true anomaly θenc. This defines two straight 

line trajectories, and thus, the minimum distance between these two linear trajectories can be found.  The minimum 

distance can then be written as an explicit function of ∆x (i.e., distance between the centre of the coordinates 

described in Figure 6 and the point at which the asteroid crosses the Earth orbital plane), which can also be 

described as a linear function of the argument of the periapsis ω. Finally, an expression such as: 
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yields an approximate value of the MOID distance. The expression min[|.|] denotes the minimum value of the 

absolute differences with any of the angles ωMOID0 and the tangent of the flight path angle can be calculated as: 
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 For a complete derivation of a similar formulae, the reader can refer to Opik‟s work
12

 or alternatively to 

Bonanno‟s work
14

.  Note that Eq.(24) is valid only for values of ω close to any of the values of ωMOID0 from equation 

(23). Figure 7 show, as example, the evolution of the MOID distance as a function of periapsis argument for the 

elliptic orbit plotted in Figure 5 (i.e., a=1.1AU, e=0.8,i=30
o
). The figure compares the results of MOID calculated by 

means of Eq.(24) with the results of a numerical algorithm that finds MOID by minimizing the distance between two 

positions defined by the true anomaly of each orbit. As it can be seen, Eq.(24) yields a very good approximation of 

the real MOID when MOID is small. Clearly, the error committed by this formulation increases for very low 

inclinations and very low eccentricities, but it is still tolerable for inclinations of 0.1 degree and eccentricities of 

0.01. 
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Figure 7. Comparison between the analytical and numerical approaches to compute MOID. 

1. Capture at MOID point 
Once it has been shown that the analytical approximation of MOID is a reliable way of assessing the distance 

between two orbits, we can define the maximum MOID at which the capture of an object is possible given a limiting 

∆v budget. Eq.(16), in section III.A.2, defined the required Earth capture maneuver 
cap

v  as a function of the 

hyperbolic excess velocity v∞ and the pericenter altitude rp. The latter can also be expressed as an explicit function 

of the hyperbolic velocity v∞ and the impulsive maneuver: 
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Since equation (26) refers to non-coplanar asteroids, the hyperbolic velocity v∞ needs to be calculated as: 
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This expression can be derived by noticing that the relative velocity at the encounter for a non-coplanar asteroid can 

be expressed as     , cos , sin
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Finally, in order to know the maximum MOID at which a direct capture is possible, the distance rp needs to be 

corrected by the hyperbolic factor, i.e., factor that accounts for the gravitational pull of the Earth during the 

asteroid‟s final approach to the Earth. This results on:  
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Note that if the perigee altitude resultant from Eq.(26) is smaller than the radius of the Earth would mean that the 

capture of that particular body is not feasible under that particular ∆v threshold used. In fact, the feasible limit for a 

fly-by was set to 200km altitude from the surface of the Earth, also to account for the Earth atmosphere. 

2. Fraction of capturable asteroids 

The previous section provided the means of calculating the MOID at which capture is possible as a function of 

cap
v . Using the linearly approximated MOID in Eq.(24), we can see that within a distance ∆ω of ωMOID0 such as: 
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a direct capture of the asteroid is possible, since the minimum orbital distance is ensured to be smaller than 

MOIDcap, and thus, the capture impulse should be smaller than 
cap

v . One may think then that the total range at the 

neighborhood of ωMOID0 is 2∆ω, and since there are 4 different ωMOID0, the total range of ω at which capture is 

possible should be 8∆ω.  This is generally correct, but attention must be pay when overlapping of ranges occurs. If 

the semilatus rectum p is close two 1, the values θenc and π- θenc are also close and their ranges (θenc±∆ω and π- 

θenc±∆ω) may overlap, a correction is applied in those cases. 

 The fraction of asteroids with given {a,e,i} that can be captured with a given ∆v budget is then:  
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without overlap correction. Fraction f provides the portion of material with Keplerian elements {a,e,i} that could be 

capture with a single maneuver (≤∆vcap) at the Earth. Capture of asteroid material by means of only one impulse 

would simplify considerably the engineering challenges of implementing the two-impulse transfer, described in 

section III.A, since this type of transfer requires of a spacecraft to be sent to deep-space to perform a change of 

plane.  

3. Keplerian Feasible Regions 

 The capture feasible regions using one-impulse transfers in the {a,e}  subspace are the same than in section 

III.A.3. The only difference between the feasible volume {a,e,i} of the two-impulse and the one-impulse model lies 

in the inclination dimension. Since no change of inclination is required, the maximum inclination from which 

asteroids can be captured is greatly increased. The limit threshold can be computed by realizing that 
2v  calculated as 

in Eq.(27) must be equal to 
2v  calculated as in Eq.(19), thus: 
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where 
pr r +200km is the lower limit for an Earth flyby. Note that, unlike the two-impulse transfer model, the 

single-impulse transfer is not able to capture all the mass inside the capture feasible region, but only a fraction f 

(Eq.(30)) of the total mass.  

C. Three-impulse method 

Important enhancement of the accessible Keplerian space can be achieved by adding a further maneuver to the 

set of impulses described as a two-impulse transfer in Section III.A (i.e., change of plane and Earth capture). Figure 

8 show the four cases for which three-impulse transfers are advantageous. Clearly, if more complex transfers are 

considered, the population of non-Earth crossing asteroids can now be accessed for exploitation, in particular 

Interior-to-Earth-orbit asteroids (IEOs) and Amor class asteroids could potentially be captured. Also, for asteroids 

that are already Earth-crossing, a small intermediate maneuver may reduce the necessary ∆v at the Earth orbital 

insertion. 

A well known technique to reduce the ∆v requirements for both planetary escape and orbital insertion is the v∞-

leveraging maneuver
8
. In the case of an Earth-crossing asteroid following the sequence of maneuvers described in 

section III.A, a small ∆vlev impulse can be added during the coplanar transfer phase. This maneuver aims to change 

the conditions of the Earth encounter so that the required ∆vcap is substantially smaller. This is ∆v
1

cap+∆vlev<∆v
0
cap, 

where ∆v
0
cap refers to the capture as described in Section III.A, while ∆v

1
cap refers to the capture with the orbital 

geometry resultant after the maneuver ∆vlev. Figure 3-C and 3-D illustrates the general geometric change of v∞-

leveraging maneuvers. Figure 3-A and 3-B shows the new accessible asteroid orbits. 
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Figure 8. Orbital geometry of Earth transfers and the v∞-leveraging maneuver. Figure A and B show the 

Earth transfer for Interior-to-Earth-orbit asteroids (IEO) and Amor class asteroids respectively. Figure C and 

D show an external and internal v∞-leveraging maneuver, respectively. 

 

Looking at Eq.(16) one can see that the lower the relative velocity at encounter v
 , the lower the impulse 

required for Earth capture. We can also reckon by looking at Eq.(18) that for a fixed semimajor axis, the lower 

would be  the eccentricity, the lower also the relative velocity. If the eccentricity is too low no intersection with the 

Earth orbit exists, thus the optimal encounter geometry will always be at the line of apsides of the asteroid.  Hence, 

if IEOs or Amor asteroids are transfer to the Earth, the optimal transfer should be such that the encounter occurs at 

the aphelion or perihelion respectively, and the transfer impulse should then be located at the opposite apsidal point 

(see Figure 3-A and 3-B).  Equation (32) computes the transfer ∆v by comparing the vis-viva equation of the instant 

before and after the impulse for both transfer types, i.e., A and B. 
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 Similarly for Earth-crossing asteroids, the optimal point to provide an impulse maneuver that changes the 

asteroid relative velocity at Earth encounter is also one of the apsidal points. Thus, the v∞-leveraging maneuver can 

be completely defined by the distance from the sun of the apsidal point where the maneuver is applied (ra or rp), the 

semimajor axis a of the initial orbit and the true anomaly of the encounter with the Earth θenc (see Eq.(33)). 
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Equation (33), together with Eq.(16), can be optimized to find the optimal encounter angle θenc that minimizes 

the most the cost of the coplanar maneuvers  ∆vlev+∆vcap. The result of the optimization shows that whenever the v∞-

leveraging strategy is able to reduce the cost of the capture, then the optimal encounter angle θenc is always one of 

the apsidal points (either π or 0 rads). There is also a region for which the v∞-leveraging is not providing any 

improvement to the total capture ∆v budget. Figure 9 shows the regions in the Keplerian plane {a,e} in which the 

v∞-leveraging strategy is advantageous, as well as the approximate reduction factor of ∆vlev+∆vcap versus a single 

∆vcap. Also the area of feasible capture for a two-impulse transfer and ∆vthreshold of 2.37km/s is superposed in the 

figure for comparison purposes. 
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Figure 9. {a,e} regions where v∞-leveraging strategy is of advantage for coplanar Earth-crosser asteroids. The 

color scale shows the fraction of ∆v saving. Also superposed in the figure is the feasible capture region for a two-

impulse transfer with ∆vthreshold of 2.37km/s. 

 

4. Keplerian Feasible Regions 

The three-impulse transfer method described here relies on some numerical techniques, such as the numerical 

optimization of equation (33). Thus, no analytical formulae were found to compute the limits of the feasible region, 

but a numerical root finding approach was used instead. Figure 10 shows the {a,e} Keplerian feasible region for 

asteroid material exploitation using the three-impulse model and a ∆v budget of 2.37 km/s. It is rather clear the gain 

on feasible area by using the three-impulse approach with a Moon‟s escape velocity ∆v budget. Also, as in Figure 4, 

the almost 5,000 surveyed asteroids have been superimposed in the figure (small crosses represent asteroids with 

{a,e,i} inside the feasible volume, tiny dots represent otherwise). It can be noted that there has been an increase of 

crosses with respect Figure 4. In particular, while Figure 4 was showing that 87 currently known asteroids could be 



transfer to Earth orbit with energy lower than the required to escape the Moon‟s gravity well, Figure 10 shows a 

total of 214 asteroids.  

 

Figure 10. Three-impulse transfer Keplerian {a,e} space reached by a maneuver of 2.37 km/s (i.e., Moon’s 

escape velocity). Superimposed are all near Earth asteroids known within the {a,e} space as of April 2010. 

D. Phasing maneuver 

Previous sections have assumed that if the orbital intersection existed, then the asteroid would eventually meet 

the Earth. This statement may be true if the time available to transfer the asteroid is not constrained, but for realistic 

scenarios this does not occur. Therefore, some analysis on the cost of the maneuvering necessary to ensure the 

encounter opportunity must be performed.  

Thus for a more realistic transfer scenario, in which the orbital phasing is also considered, an additional 

impulsive maneuver may be necessary in order to provide the right phasing to the asteroid. This maneuver is 

generally small and must be provided as early as possible, so that the secular effect due to the change in period 

yields the orbital drift necessary for the asteroid to be at the Earth orbital crossing point at the required time. Hence, 

if only secular effects are considered
15-16

, which is regarded as a good approximation for the level of accuracy 

intended in this paper, the phasing maneuver should correct the difference in mean anomaly ∆M that exists for the 

intended encounter (see Figure 3). This is expressed as: 

    e mM n t t      (34) 

where ∆n is the change of mean motion of the asteroid due to the phasing maneuver and (te-tm) is the time-span 

between the maneuver (tm) and the encounter (i.e. time at which the Earth is at the crossing point te). The change in 

mean motion of the asteroid can be defined as: 
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where δa is the change of semi-major axis of the asteroid due to the impulsive maneuver. Using the Gauss planetary 

equations
17

, δa can be expressed as: 
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where δvt is the tangential component of the impulsive maneuver and v0 is the orbital velocity at the point at which 

the impulsive maneuver is applied. Eq.(36) seems to indicate that the optimal position for a phasing maneuver is the 

periapsis, since this is the point at which the orbital velocity v0 is maximum. This is generally true, except for cases 

in which the term (te-tm) of equation (34) drives the optimality of the phasing maneuver.  

 Finally, rearranging Eq.(34), (35) and (36), the phasing maneuver necessary to drift the asteroid a ∆M angular 

position at time te, given a impulsive maneuver at time tm, can be expressed as: 
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 (37) 

which provides a good estimation of the cost of the encounter. Note that this implies that the optimal phasing 

maneuver has only tangential impulse.  

 Considering an Earth-asteroid configuration such as in Figure 3, an algorithm was implemented that computes 

the fraction of mean anomalies inside the asteroid orbital path that can be phased with the Earth with a δvt smaller 

than a given threshold. The algorithm requires as an input the ∆M at a given time te at which the Earth is assumed to 

be in the crossing point from which ∆M is measured. Also a time constraint needs to be specified, which defines the 

maximum allowed maneuver time t
max

m. Then, the algorithm computes the δvt necessary to cancel not only the ∆M 

gap at time te, but also all other possible encounters opportunities, which are defined by the times at which the Earth 

is at the crossing points during the time-span available. For each possible encounter two maneuver times are 

considered; the first available periapsis passage and the t
max

m. This procedure is repeated for thousand different 

angular positions ∆M at te, from which then the fraction of the orbit that can be phased under a ∆v limit is calculated. 

IV. Asteroid Exploitable Mass 

Transfers and asteroid population model can finally be set together in order to estimate the available material that 

could be exploited by future space missions. The total available material will be mapped as a function of the limiting 

∆v budget, and as described in section III, once a ∆v threshold has been fixed, the Keplerian regions of feasible 

capture can be calculated for each transfer type. These regions delimit the set of {a,e,i} from which an asteroid 

could be transported to a weakly-bound Earth orbit with a transfer requiring a total ∆v lower than a fixed threshold. 

The fraction of the near-Earth object population that falls into this feasible region can be calculated by integrating 

Eq.(6) over the entire feasible volume. The integration limits of Eq.(6) were defined for each particular transfer 

model as functions of ∆vthreshold, semi-major axis a and eccentricity e:  
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 For the free-phase two-impulse and three-impulse transfer, any asteroid within the feasible capture region could, 

in principle, be capture (or its material exploited). On the other hand, the one-impulse is a special case in which only 

a fraction f (see Eq.(30)) of asteroids at each {a,e,i} point will have the conditions necessary to ensure a capture 

bellow the ∆v threshold.  Thus, in this case, the integration required is: 

    
max max max

min min min

, , , ,
a e i

a e i
P a e i f a e i di de da        (38)  

When P is known, the total mass of near Earth objects is calculated by means of Eq.(5), where a range of 

diameters need to be specified. By multiplying the probability P by this total mass of NEA within the given range of 

object size, one obtains the total asteroid mass that could be theoretically captured and exploited given a ∆v budget.   

A. Total Available Mass 

Figure 11 shows the results of integrating the resources available considering all near Earth objects between 32 km 

(i.e., largest Near Earth object known today) and 1 meter diameter. Note that the discussion about the minimum 

object size has been deliberately avoided so far. One may discourse that objects of 1 meter diameter are too small to 

be worth a space mission to exploit its raw materials, and thus, a larger limit, such as 10 meters or 100 meters 

diameter should have been chosen instead. These higher limits of minimum asteroid size barely modify the results 

on Figure 11, at least in a logarithmic scale, since only 0.42% or 2.28% of the asteroid mass is made up by objects 

sized between 1-10 m or 1-100 m, respectively. Hence, since the lower limit of capturable material has limited effect 

in the results of the paper, the discussion of whether or not is worth exploiting such small objects as 1 m diameter 

can be postponed at this point.  
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Figure 11. Total asteroid mass available for exploitation of resources as a function of ∆v threshold. 

A comparison can now be made of the exploitation of lunar and asteroid resources. Figure 11 shows that for 

a
threshold

v  equal to the Moon‟s escape velocity (i.e., 2.37 km/s) the total available asteroid material is 2.4x10
12 

kg if 

only one maneuver is considered, 1.1x10
13 

kg for two-impulse transfers and 6.3x10
13 

kg with three impulses. In 

addition to the fact that  the Moon is believed to be a very resource-poor body
18

, lunar resources would require a 

minimum v of 2.37 km/s to be extracted from the lunar gravity well. However, as shown in Figure 11, an important 

aspect of asteroid resources is that they can be exploited at a whole spectrum of v. For example, for a 
threshold

v of 

100 m/s a total mass of 6x10
9 

kg could be transferred to Earth by using a one-impulse transfer.  Considering, for 

example, that about 10% of objects are expected to be hydrated carbonaceous asteroids
19

, and that those are believed 

to have contents of water around 8.5% of the weight of the asteroid
18

, this 6x10
9 

kg of material represent, among 

others exploitable resources, about 25,000 tons of water. All this water should be concentrated in a few of the largest 

asteroids within the “reachable” region, since in a power law distributed population most of the mass is carried by 

the largest objects.  Note also, that the energetic cost of shipping these 25,000 tons of water to low-Earth Orbit (e.g., 

200 km circular orbit) would be 2.7 times lower than shipping the same the water from the Earth surface. In fact, 

there should be a total of 4x10
10 

tons of water available in near-Earth orbit that could be used in LEO at a lower cost 

than water from the surface of the Earth. 

The transfers models used in this paper provide a conservative scenario for the required v and so the available 

asteroid mass found is then a low estimate. More complex trajectories, such as multiple Earth fly-by, lunar gravity 

assists or manifold dynamics
20

, would be expected to provide a significant increase in captured mass. Note that if an 

optimized trajectory reduces v cost in, for example, 33%, the total available mass is increased by a much higher 

proportion. For example of 100 m/s threshold, a 33% reduction in v will allow access to the regions reached by 150 

m/s transfers, which would yield 1.2x10
10

kg of mass to be captured, hence a 100% increase.  

Finally, note that one of the underlying assumptions in Bottke et al.
7
‟s model, and thus also in this paper, is that 

the orbital distribution is independent of the asteroid size. The orbital distribution described in section II.B assumes 

that the orbital evolution of asteroids is caused solely by gravitational forces. While this approximation may be more 

than fine for large objects, for small objects (<<1km) the contribution of non-gravitational forces, such as yarkovsky 

effect, may become an important factor. The minimum object size for which Bottke et al.
7
 model is still a good 

approximation is not clear
21

, neither the effect of non-gravitational forces in the global evolution of asteroids. These 

issues shall then be considered in future work.     



B. Maximum and Time Constrained Mass 

As it has been previously remarked, all transfers model were assumed phase free. Thus, it remains to analyze the 

effects of inducing a correct phasing to asteroid in order to meet the Earth at the orbital crossing points (see Section 

III.D.). The results shown in Figure 11 assumed that the time available for transferring the asteroid material is 

sufficiently large so that the phasing maneuver required is negligible, but a more realistic scenario should also 

considered a maximum time allowed for the transfers described throughout Section III.  

In order to include the effects of phasing maneuvers, the integration in Eq.(6) needs now to include a new term 

to account for the fraction of asteroids that can be phased with the Earth with a ∆v maneuver lower than the 

remaining delta-velocity. This remaining ∆v is, at each {a,e,i} point in the Keplerian space, the difference between 

the ∆v required for a capture and the given ∆vthreshold. 

    
max max max

min min min

, , ( , , ), , ,
transfer

a e i

t threshold transfer transfer
a e i

P h a e v v a e i t a e i di de da            (39) 

where h is the fraction of material that can be “phased” with a ∆v lower that the remaining ∆v budget, i.e., 

( , , )threshold transferv v a e i  , ( , , )transferv a e i  refers to the cost of the nominal transfer as described in section III and 

∆ttransfer is the limiting time-span for the transfer. A slightly more complicated expression is required to compute 

transfertP for the case of one-impulse transfers, since the cost of the nominal transfer also depends on the argument of 

the periapsis, ( , , , )transferv a e i  .Note that, in the one-impulse transfer case,  the argument of the periapsis ω defines 

the altitude of the fly-by, and thus, strongly influences the cost of the Earth orbital insertion, Eq. (16). In this case, to 

compute 
transfertP , the expression for f  in Eq.(38) should be calculated as: 
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Figure 12. Total captured mass and time constrained exploitable mass. 

Figure 12 includes the effect of 40, 20 and 10 years time constraints on the accessibility of asteroid resources. 

The figure demonstrate how time constraints, although important for the accessibility of resources at very low v 

(<100 m/s), are not relevant at higher energies. For resources above 1 km/s the effect of time constraints are barely 

detectable. Figure 12 shows only the mass captured with the optimum transfer among the three transfer model 

presented in the paper. At the low range of v (<300 m/s) a simple one-impulse transfer offer the best option to 



capture near-Earth material, while at higher energies the three-impulse transfer yields better result. Still, the two 

impulse transfer has been left in the figure when it offers a better option than the one-impulse. The two-impulse 

transfer, albeit yields lower masses than the three-impulse transfer, offers a conservative estimation of the total mass 

and a simpler set of maneuvers. 

V. Conclusion 

This paper has shown that the utilization of asteroid resources may be a viable mean of providing substantial 

mass in Earth orbit for future space ventures. A statistical population of near Earth asteroids has been used, along 

with a map of the Keplerian orbital element space from which the Earth can be reached under a given series of 

impulsive maneuvers, to determine the mass available for resources exploitation within a given specific energy. The 

range of energies for this analysis was selected so that a direct comparison can be made between the cost of 

exploiting moon and asteroid resources. The results show that there is sufficient asteroid mass in the near-Earth 

orbital space to justify the exploitation of its resources. The delivery of the resources from targeted asteroids to Earth 

orbital space for its utilization has been shown to be a more energy efficient approach than lifting the same amount 

of resources from the surface of the Earth, or even delivering resources from the Moon. Higher energy cost may 

only be justifiable if the required resource is not available on the Moon. Moreover, the size distribution of objects 

for near-Earth objects ensures that the amount of exploitable mass is primarily made up of the largest objects within 

Earth reach. This guarantees that most of the exploitable mass could be successfully harvested by only a few mining 

or capture missions.    
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