Picture of virus under microscope

Research under the microscope...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs.

Strathprints serves world leading Open Access research by the University of Strathclyde, including research by the Strathclyde Institute of Pharmacy and Biomedical Sciences (SIPBS), where research centres such as the Industrial Biotechnology Innovation Centre (IBioIC), the Cancer Research UK Formulation Unit, SeaBioTech and the Centre for Biophotonics are based.

Explore SIPBS research

Automated multigravity assist trajectory planning with a modified ant colony algorithm

Ceriotti, M. and Vasile, M. (2010) Automated multigravity assist trajectory planning with a modified ant colony algorithm. Journal of Aerospace Computing, Information, and Communication, 7 (9). pp. 261-293. ISSN 1542-9423

[img] PDF
Ceriotti_M_Vasile_M_Pure_Automated_multigravity_assist_trajectory_planning_with_a_modified_ant_colony_algorithm_2010.pdf - Preprint

Download (662kB)

Abstract

The paper presents an approach to transcribe a multigravity assist trajectory design problem into an integrated planning and scheduling problem. A modified Ant Colony Optimization (ACO) algorithm is then used to generate optimal plans corresponding to optimal sequences of gravity assists and deep space manoeuvers to reach a given destination. The modified Ant Colony Algorithm is based on a hybridization between standard ACO paradigms and a tabu-based heuristic. The scheduling algorithm is integrated into the trajectory model to provide a fast time-allocation of the events along the trajectory. The approach demonstrated to be very effective on a number of real trajectory design problems.