Picture of person typing on laptop with programming code visible on the laptop screen

World class computing and information science research at Strathclyde...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by researchers from the Department of Computer & Information Sciences involved in mathematically structured programming, similarity and metric search, computer security, software systems, combinatronics and digital health.

The Department also includes the iSchool Research Group, which performs leading research into socio-technical phenomena and topics such as information retrieval and information seeking behaviour.

Explore

An ant system algorithm for automated trajectory planning

Ceriotti, M. and Vasile, M. (2010) An ant system algorithm for automated trajectory planning. In: World Congress on Computational Intelligence, WCCI 2010, 2010-07-18 - 2010-07-23, Barcelona, Spain.

[img]
Preview
PDF (Ceriotti_M_&_Vasile_M_-_strathprints_-_An_ant_system_algorithm_for_automated_trajectory_planning_Jul_2010.pdf)
Ceriotti_M_&_Vasile_M_-_strathprints_-_An_ant_system_algorithm_for_automated_trajectory_planning_Jul_2010.pdf

Download (402kB) | Preview

Abstract

The paper presents an Ant System based algorithm to optimally plan multi-gravity assist trajectories. The algorithm is designed to solve planning problems in which there is a strong dependency of one decision one all the previously made decisions. In the case of multi-gravity assist trajectories planning, the number of possible paths grows exponentially with the number of planetary encounters. The proposed algorithm avoids scanning all the possible paths and provides good results at a low computational cost. The algorithm builds the solution incrementally, according to Ant System paradigms. Unlike standard ACO, at every planetary encounter, each ant makes a decision based on the information stored in a tabu and feasible list. The approach demonstrated to be competitive, on a number of instances of a real trajectory design problem, against known GA and PSO algorithms.