Picture of a black hole

Strathclyde Open Access research that creates ripples...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of research papers by University of Strathclyde researchers, including by Strathclyde physicists involved in observing gravitational waves and black hole mergers as part of the Laser Interferometer Gravitational-Wave Observatory (LIGO) - but also other internationally significant research from the Department of Physics. Discover why Strathclyde's physics research is making ripples...

Strathprints also exposes world leading research from the Faculties of Science, Engineering, Humanities & Social Sciences, and from the Strathclyde Business School.

Discover more...

An ant system algorithm for automated trajectory planning

Ceriotti, M. and Vasile, M. (2010) An ant system algorithm for automated trajectory planning. In: World Congress on Computational Intelligence, WCCI 2010, 2010-07-18 - 2010-07-23, Barcelona, Spain.

[img]
Preview
PDF (Ceriotti_M_&_Vasile_M_-_strathprints_-_An_ant_system_algorithm_for_automated_trajectory_planning_Jul_2010.pdf)
Ceriotti_M_&_Vasile_M_-_strathprints_-_An_ant_system_algorithm_for_automated_trajectory_planning_Jul_2010.pdf

Download (402kB) | Preview

Abstract

The paper presents an Ant System based algorithm to optimally plan multi-gravity assist trajectories. The algorithm is designed to solve planning problems in which there is a strong dependency of one decision one all the previously made decisions. In the case of multi-gravity assist trajectories planning, the number of possible paths grows exponentially with the number of planetary encounters. The proposed algorithm avoids scanning all the possible paths and provides good results at a low computational cost. The algorithm builds the solution incrementally, according to Ant System paradigms. Unlike standard ACO, at every planetary encounter, each ant makes a decision based on the information stored in a tabu and feasible list. The approach demonstrated to be competitive, on a number of instances of a real trajectory design problem, against known GA and PSO algorithms.