An Ant System Algorithm for Automated Trajectory Planning

Matteo Ceriotti, and Massimiliano Vasile, Member, IEEE

Abstract— The paper presents an Ant System based algorithm
to optimally plan multi-gravity assist trajectories. The algorithm
is designed to solve planning problems in which there is a
strong dependency of one decision one all the previously-
made decisions. In the case of multi-gravity assist trajectories
planning, the number of possible paths grows exponentially with
the number of planetary encounters. The proposed algorithm
avoids scanning all the possible paths and provides good results
at a low computational cost. The algorithm builds the solution
incrementally, according to Ant System paradigms. Unlike
standard ACO, at every planetary encounter, each ant makes a
decision based on the information stored in a tabu and feasible
list. The approach demonstrated to be competitive, on a number
of instances of a real trajectory design problem, against known
GA and PSO algorithms.

I. INTRODUCTION

The complete planning of a multi-gravity assist trajectory
(MGA) (i.e. the definition of an optimal sequence of plan-
etary encounters and the definition of one or more locally
optimal trajectories for each sequence) has been approached
with two main class of techniques: two level approaches,
integrated approaches.

Two-level approaches split the problem into two sub-
problems which lay at two different levels: one sub-problem
is to find a suitable set of sequences of planetary encounters,
the other is to find at least one optimal trajectory for
each sequence. Two-level approaches define the planetary
sequence independently of the trajectory itself [1]. They use
a simplified, low fidelity, model at the first level to quickly
assess many, if not all, sequences and a more accurate model,
at lower level, to optimize the trajectory. Each sequence
is represented by a string of integer numbers, while the
associated trajectory is represented with a string of mixed
real and integer numbers defining all the characteristics of the
events occurring along the trajectory (e.g. launch, deep space
maneuver, arrival at a celestial body, number of revolutions
around the Sun, etc.).

The main issue with two-level approaches is to assess the
optimality of a given planetary sequence without an exhaus-
tive search for all possible trajectories associated to that
sequence. Unfortunately, finding an optimal trajectory is a
very difficult global optimization problem in itself. This,
combined with the fact that usually there exist a very high
number of sequences for a given transfer problem, requires
a considerable computational effort. The computational cost

Matteo Ceriotti is with the Advanced Space Concepts Laboratory, Depart-
ment of Mechanical Engineering, University of Strathclyde, Glasgow, Gl
1XJ, UK (phone: +44 141 548 5726; email: matteo.ceriotti @strath.ac.uk).

Massimiliano Vasile is with the Space Advanced Research Team, De-
partment of Aerospace Engineering, University of Glasgow, James Watt
South Building, G12 8QQ, Glasgow, UK (phone: +44 141 3306465; email:
m.vasile @aero.gla.ac.uk).

can be reduced by discarding non-promising sequences.
However, if the low-fidelity model is not accurate enough,
either some good sequences are discarded, or many of the
retained ones can result to be not good.

As opposed to the two-level approaches, integrated ap-
proaches define a mixed integer-continuous optimization
problem, which tackles both the search of the sequence and
the optimization of the trajectory, using a single model, at the
same time [2]. This kind of problems is known in literature
as a hybrid optimization problem [3], [4]. The main difficulty
with integrated approaches is that a variation of even a single
celestial body in the sequence corresponds to a substantially
different set of trajectories. Therefore, if the solution of the
hybrid optimization problem is represented with a single
vector, a small variation of some of its components can
lead to a huge variation of the cost function. In addition,
a variation of the length of the sequence implies varying the
number of legs of the trajectory, and thus the total length of
the solution vector.

The automatic design of a trajectory with discrete events
was recently formulated by Ross et al. as a Hybrid Optimal
Control Problem [3], and a solution was proposed by Wall
and Conway [5] with a two level approach based on Genetic
Algorithms. In Conway’s approach an outer loop selects the
sequence and an inner loop finds sets of optimal solutions.
A single model is used and this partially mitigates the
difficulties of two level approaches.

The MGA design problem can be translated into a path
planning, or routing, problem in which the way-points (the
planets) are moving and actions have to be allocated to go
from one way-point to another. According to this represen-
tation of the MGA problem can be seen as a variant of the
dynamic vehicle routing problem [6] in which each node of
the network can be revisited, the customers are moving and
the cost of each leg of the itinerary depends on the rout
followed by the vehicle up to that leg. Similar to other NP-
hard problems, the number of possible paths, for an MGA
transfer, grows exponentially with the number of planetary
encounters. However, unlike other path planning or routing
problems, the cost of the transfer from one way-point to
another depends on the previous history of allocated actions.
This paper proposes to solve the path planning problem
associated to MGA trajectory design with a modified Ant
Colony Optimization [7] algorithm. ACO was originally
created to solve the Traveling Salesman Problem (TSP) [8],
and later successfully applied to a number of other discrete
optimization problems. In the standard TSP, however, the
cities are not moving and the cost of each leg is independent
of the others. In order to solve the dependency problem
associated to the planning of MGA trajectories, the proposed

modified ACO does not use standard pheromone deposition
and evaporation heuristics but employs tabu lists, to guide the
decision of the ants at each planet (or node), and an external
archive to build a stochastic model of the search space.

In the literature, some ACO-derived meta-heuristics exist
for the specific solution of different scheduling problems.
In particular, Merkle et al. [9] proposed to apply ACO to
the solution of the Resource-Constrained Project Scheduling
Problem, while Blum, in his work [10], suggested the hy-
bridization of Ant Colony Optimization with a probabilistic
version of Beam Search for the solution of the Open Shop
Scheduling problem.

Recently, some authors have hybridized ant systems with
tabu search for applications such as the Job-Shop Scheduling
problems [11], [12] or the data clustering problem [13].
The algorithms proposed in the literature use tabu search
to improve locally the solutions or to avoid re-visiting
nodes in a tree. The modified ACO algorithm in this paper,
instead, employs tabu lists to discriminate between feasible
and infeasible paths. In fact, because of the dependency
problem, at every node, feasible and infeasible directions are
undistinguishable without the memory of the past moves of
the ants.

The paper is organized as follows: the MGA planning
problem will be briefly introduced, then the modified ACO
algorithm will be described in details with an analysis
of its complexity; a discussion will follow comparing the
proposed planning algorithm against standard ACO. Finally,
two case studies will demonstrate the effectiveness of the
proposed approach against Genetic Algorithms (GA) and
Particle Swarm Optimization (PSO).

II. THE MGA PLANNING PROBLEM

Conceptually, an MGA trajectory can be seen as a sched-
uled sequence of events (e.g. launch, targeting deep space
manoeuvre, swing-by, planetary capture) characterized by a
set of integer variables identifying the type of event and a
set of real variables identifying the time and characteristics
of the event.

A trajectory model was recently proposed that transforms
the above mentioned scheduled sequence of events, with
the associated mixed integer-real set of variables, into a
finite space of unscheduled discrete events [14]. The discrete
events are: launch, deep space manoeuvre, swing-by, and
planetary capture. Each event is seen as an action required to
transfer the spacecraft from one celestial body to another. A
complete trajectory is made of a sequence of legs connecting
np + 1 celestial bodies [Py, Py,...,P,,]. The trajectory
starts from P, at time ¢y with the direction of the velocity
vector after launch ¢, (see Ceriotti et al. [14] for more
details). The first leg goes from F, to P;, then a number
of swing-by’s and interplanetary legs follow, until the final
planet P, . Thus, a complete trajectory with np -+ 1 planets
has np legs, and np — 1 swing-by’s.

Each transfer from a planet P; to a planet P;; is fully char-
acterized by five parameters mpsar,, Nrevl,is Mrev2,is fp/a,i
and fi/2;: mpsu, is the magnitude of the velocity change

(or DSM) along the transfer arc from P; to P;11,%ycv1,; the
number of revolutions around the Sun prior to the DSM,
Nrev2,; the number of revolutions around the Sun after
the DSM, f,/,,; defines where the DSM occurs (only two
positions are allowed, pericenter and apocenter of the transfer
arc) and fy /5 ; defines at which intersection the spacecraft is
going to meet the planet P;,; (only two intersections are
possible along the orbit of the planet). A complete plan
is, therefore, defined assigning a value to P; and to the
vector by = [Mpsas,, Nrevtis Mrevz,is [pjais 172,47 for all
1 =20,...,np — 1. A partial or incomplete plan is the set of
parameters sufficient to describe a solution up to transfer .
If at transfer 7 there is no vector x; such that the spacecraft
can be transferred from P; to P;y; the plan is said to be
broken and the solution is said to be infeasible at transfer 7.
The MGA planning problem can be formulated as the
unconstrained minimization problem:

min 1
xEDy ()
where y is the cost function associated to a

complete plan, D is the search space and x =
[to, @0, Po, bl, P17 bl, vevy Pi; bi, veey Pnp7bnp—1]T~ If each
real and integer variable in x can assume only % discrete
values and j planets are available at every encounter then
k2j24k3 are the possible paths from P; to P, and for
np + 1 planets the number of paths are k2 []"" (j24k?).

A. Solution coding

The set of parameters in x is inhomogeneous, as it is made
of real, integer and binary variables. Thus, in the present
implementation, the values of the departure date t;, and
the departure angle g, are assumed to be pre-assigned
and therefore the two parameters are removed from x. The
rationale behind this choice is that, if an algorithm exists that
is able to efficiently generate a complete plan for a given
tg, then an unidimensional search in the time domain can
be performed to find the optimal launch date. The angle
(o on the other hand is often a mission requirement [1].
Furthermore, it is assumed that the departure planet Py is
given a priori.

Each solution representing a plan is encoded using a vector
s of positive integers. The vector has 2np components. Each
pair of consecutive components encodes all the parameters
necessary to characterize one transfer, or segment of the
plan (Fig. 1). The first element of the pair encodes the
identification number of the target planet according to the
following procedure: given the ordered set Qp;, containing
all the celestial bodies available at transfer 7, and the index if
J = Sa(i—1)+1, then the target planet is qp;; € Qp;, where
now ¢ goes from 1 to np.

The second element of the pair is the row index of the matrix
G; containing all the possible combinations of indexes
identifying the elements of the five sets: Q1; = {q1,|q1,: €
R}, Qo2 = {a2ilae; € N}, Qs = {g3lez: € N},
Qui = {quilgs; € {0,1}}, Qs = {¢s.4lg5; € {0,1}}.
If 94, ={0,1} and Qs; = {0, 1} then the matrix G; is:

Transfer 1 Transfer 2 Transfer 3
— "
l Planets

ot I N I
T T T Types of transfer
Fig. 1. Vector for coding a three-leg solution.
[1 1 1 1 17
1 1 1 1 2
1 1 1 2 1
1 1 1 2 2
1 1 2 1 1
G, = 1 1 2 1 2 2
1 1 2 2 1
1 1 2 2 2
| 1Q1a] Q24| Q34 2 2]

where |.| denotes the cardinality of a set. Each row of G; is
a vector representing a different type of transfer. In general,
the matrix has [Qy ;| - [Q2.| - [Qs,i| - [Qal - [Qs5.i| rows,
which is also the number of possible different transfers for
a given segment of a plan. The parameters for the j™ type
of transfer can be obtained as follows: mpsy, = q1,ik,>
Nrevl,i = 42,ikys Nrev2,i = 43,iks3> fp/a,i = Q4,iky>» f1/2,i =
q5,iks» where k; = Gi,jls ky = Gz’,jz, ky = Gz‘,js, ky =
Gijas ks = Gi js.

III. THE T-ACO ALGORITHM

The algorithm for the solution of the MGA planning problem,
called T-ACO in the following, starts from organizing the
search space as an acyclic oriented tree. Each branch of
the tree represents a segment of the plan, while each node
(or leaf) represents a different destination planet and type
of transfer. A population of virtual ants are dispatched to
explore the tree, searching for an optimal solution. The
search runs for a given number of iterations 7ier maaz, OF
until a maximum number of objective function evaluations
Neval,mas Nas been reached. An evaluation is a call to the
trajectory model, in order to compute the objective value
associated to a given solution. Algorithm 1 illustrates the
main iteration loop. Each iteration consists of two steps:
first, a solution generation step (lines 2 to 8), and then
a solution evaluation step (line 9). In the former step,
the ants incrementally compose a set of solution vectors,
while the latter invokes the trajectory model to assess the
feasibility and the objective value of each generated solution.
Feasible solutions are stored in a feasible list while infeasible
solutions are stored in a number of tabu lists.

A. The Tabu and Feasible Lists

The transfer from planet P; to planet P;y; can be feasible
or infeasible, for the same set of parameters, depending on

Algorithm 1 Main T-ACO algorithm
1: Set number of ants equal to m
2: forall k=1,...,m do
3: Generate planetary sequence

Generate types of transfers

4
5: if s is not discarded then
6: S+ SuU {S}
7
8
9

end if
: end for
: Evaluate all solutions in S
10: Update feasible list and tabu list
11: Termination Unless njier > Niter,maz V Neval >
Neval,maz,» GOTO Step 1

all the preceding transfers from 0 to (i — 1). For this reason,
when a plan contains an infeasible transfer, it is necessary to
store the whole path that led to that infeasible transfer. Thus,
all the parameters characterizing the partial solution up to P;
are stored in a tabu list.

In particular, if the problem involves np transfers, the same
number of tabu lists are used. The tabu list of transfer ¢
contains all the partial solutions, which are feasible up to
P;. The tabu list is stored in a matrix (one for each transfer),
which has an arbitrary number of rows and 2¢ columns.
The number of elements in the tabu lists can be limited, to
limit the memory requirements and the search time. Once
one of the tabu lists is full, the optimizer can either stop or
simply start replacing the older elements.

Dual to the list of tabu partial solutions, the feasible list
stores all the solutions, which are completely feasible, i.e.
reach the destination planet. The feasible list is a matrix with
an arbitrary number of rows and 2np columns. Since each
solution contained in the feasible list is complete, then it is
possible to associate an objective value to each one of them.
As for the tabu list, the length of the feasible list can be
limited to save memory. In this case, when the list is full, the
optimization can either stop or simply the feasible solutions
with the worst objective value can be replaced.

B. Solution generation

The tree is simultaneously explored, from root to leaves, by
m ants. At each iteration, each one of the m ants explores
the tree independently of the others, but taking into account
the information collected in the feasible and tabu lists by all
the ants at the previous iterations. As an ant moves along
a branch, it progressively composes a complete solution. At
first, each ant assigns a value to the odd entries of the solution
vector, i.e. composes the sequence of planetary encounters
(planetary sequence generation), then it assigns a value to
the even entries of the solution vector, i.e. the parameters
defining the types of transfers (type of transfer generation).
1) Planetary Sequence Generation: Each ant composes a
solution adding one planet at the time. As the departure
planet is given, the ant has only to choose the destination
planet for each transfer. The choice is made probabilistically

by picking from the list Qp ;. The selection depends on the
discrete probability distribution vector dp; (one for every
transfer), which contains the probability associated to each
body in Qp;. Every time an ant is at transfer ¢, the proba-
bility distribution vector is reset to dp; = [1,1,...,1]7, i.e.
all the planets have equal probability to be chosen, and the
ant sweeps the entire list Qp; substituting the identification
number of each element in Qp; into the i" odd component
of the solution vector s. Then, the feasible list is searched, for
all solutions that have a (partial) planetary sequence which
matches the one in s. Say that the 4% element of Op,; is
added to s, and the resulting partial sequence matches the
partial sequence of the /™ solution in the feasible lists, then
the probability dp;; associated to the j™ element of Qp; is
increased as follows:

1
dP,ij — dP,ij + Ewplanet (3)

The amount of probability which is added depends on the
objective value y; of the matching solution in the feasible
list, and on the weight wpiane:. Thus, the probability of
choosing the j™ planet increases according to the number of
times it generates a promising sequence (leading to a feasible
solution), to the value of the feasible solution itself, and to
the parameter wpyjgnet-

This mechanism (summarized in Algorithm 2) is analogous
to the pheromone deposition of standard ACO and aims
at driving the search of the ants toward good planetary
sequences. In fact, those planets which generate (partial)
sequences that appear either frequently in the feasible list,
or rarely, but with a low objective function are selected with
a higher probability. On the other hand, the probability of
selecting other planets remains positive, such that one or
more ants can probabilistically choose a planet that generates
an undiscovered sequence. Note that, if the feasible list is
empty, then all the planets have the same probability to be
selected. The parameter wpqner controls the learning rate
of the ants. A low value of wyignet Will make the term
Wplanet /y; small, and thus the probability distribution will
not change much, even if the solution appears repeatedly in
the feasible list, or with low values of y. Thus, a relatively
low value of wpigner Will favor a global exploration of the
search space, while a high value of wpane; Will greatly
increase the probability of choosing a planet which led to
a feasible sequence.

Algorithm 3 assigns a value to the index j, given the (non-
normalized) probability distribution vector dp; [7]. The
procedure iterates for all the transfers. At the end, all the
odd entries of the solution s contain a target planet and the
planetary sequence is complete.

2) Type of Transfer Generation: Once an ant has filled in the
odd components of a solution s, it proceeds assigning values
to the even components. Similarly to the planet sequence
generation, for each transfer all the available types of transfer
are assigned, one at the time, to the solution s. A vector
s for which a value is assigned to both the odd and even
components up to leg ¢ represents a partial solution. For

Algorithm 2 Planetary sequence generator
1: foralli=1,...np do

2: setd « [1,1,...,1]T

3 for all target body j available at transfer ¢ do

4: S(1+2(i-1) < J

5: for all solutions [, in the feasible list, that match
s do

6 dP,ij — dP,ij + y%wplanet

7: end for

8 end for

9: S(142(i—1)) < SelectProbabilityDistribution(d p ;)

10: end for

Algorithm 3 Function j < SelectProbabilityDistribution(d)
I: r < U(O,l)zjd]
2: 5«1
3 p<+dy

4: while p < r do

5

6

7

j—j+1
p<p+d;
: end while

each new partial solution, the tabu list is first checked. If the
partial solution appears in the tabu list, then it means that
this solution will be infeasible, regardless of the way it is
completed. The probability of the type of transfer associated
to that partial solution is set to zero, to avoid future selection
of that path. If the partial solutions does not appear in the
tabu list, the feasible list is searched for any matching partial
solution. For every match found, the probability distribution
for that type of transfer is modified as follows:

1
disj < dyij + Ewtype 4

where the vector d;; contains the probability distribution
associated to the rows of the matrix G, and the weight wyp.
is introduced with analogous meaning to wyanet- In fact, the
higher the coefficient, the higher the chances that solutions
similar to the feasible ones are generated. Conversely, a
low value of wyy,. will favor the selection of sequences
with a different type of transfer, thus increasing the random
exploration of the whole solution space. If, at a given leg 1,
all possible transfer types correspond to partial solutions in
the tabu list, the vector of probability distribution d; will be
full of zeros. As a consequence, the solution s is discarded,
and the ant can stop its exploration of the tree.

At the end of the solution generation step, the solution s is
either discarded or completed. Once all the ants complete
their exploration, the result is a number of solutions (less
than or equal to the number of ants m) to be evaluated. The
procedure is summarized in Algorithm 4.

C. Solution Evaluation

Once a set of complete plans S has been composed by the
ants, each plan has to be evaluated to assess its feasibility and
objective value. This is done by calling the trajectory model.

Algorithm 4 Transfer type generator
1. foralli=1,...,np do
2: set dy; + [1,1,...,1)7

3 for all target body j available at transfer ¢ do

4 S(242(i-1)) < J

5 if s is in tabu list of transfer ¢ then

6: dt,j 0

7 else

8 for all solutions /, in the feasible, that match
s do

9: dtﬂ'j — dtﬂ‘j + y%wtype

10 end for

11: end if

12: end for

13: if Zj dt,ij = 0 then

14: Discard solution, Terminate

15: else

16: S(242(i—1)) < SelectProbabilityDistribution(d; ;)

17: end if

18: end for

If a solution is infeasible at transfer number ¢ its objective
value is set to y = 400 and the solution is stored in the ;™
tabu list. If a solution is feasible, instead, it is stored in the
feasible list.

D. Algorithm Complexity Analysis

The number of possible alternative solutions to the planning
problem depends on the number of available celestial bodies
for each planetary encounter, and on the values mpga,i,
Nrevl,is Mrev2,is fpja,i» J1/2,- In particular if one assumes
that, at each planetary encounter, k; possible planets are
available, while mpsasi, Mrev1,s and Npep2; can take k;
discrete values each, then the total number of possible
transfers (or plans), for np planetary encounters, is [['” 4k;.
If the values k; are equal for each encounter then the total
number of plans is 4”7 k3"P which is exponential with the
number of encounters.

The ants avoid exploring the entire tree of possible plans
but need to save the feasible solutions and the tabu solu-
tions respectively in the feasible and tabu lists. Thus, the
algorithmic complexity is mainly driven by the access to the
feasible and tabu lists. In the worst case scenario all plans,
but one, turn out to be infeasible only at the last planetary
encounter, therefore the tabu list of the last encounter grows
exponentially. If all the plans were feasible, then the tabu
lists would be empty, and the feasible list would contain only
the solutions explored by the ants at each repetition of the
algorithm. Given m ants and n;;., iterations of the algorithm,
the length of the feasible list would grow as n;te,m.
However, on average, a number of plans will be infeasible
after n, — ¢ planetary encounters, others after n, —i+41,n, —
t + 2,..,n, — 1. All the infeasible plans at encounter n, — ¢
are terminated and therefore are not included in the tabu list
of any subsequent encounter. If the fraction of tabu transfers
at each planetary encounter is p € [0 1], then at the first one,

only 4k3(1 — p) transfers will survive to the next encounter.
The tabu list of the next encounter will be 16k%(1 — p)p
long and at the very last encounter the tabu list will be
4nek3ne (1 — p)"P~1p long. This would be the algorithmic
complexity if the ants were exploring all possible feasible
transfers. In actuality, the number of elements in the tabu
lists will grow with the number of explored plans per iteration
which is at most equal to the number of ants, therefore, for
m ants the maximum length of a tabu list at encounter i is

m'(1 —p)"~'p.
E. Comparison with Standard ACO

The way in which the ants generate the solutions in T-
ACO (or tours, to use ACO nomenclature) is similar to
what happens in the TSP with standard ACO [7]: each ant,
independently of the others, generates a tour by adding nodes
(or cities) one at a time. Each node is chosen probabilistically
among a set of available nodes: for the TSP, the available
nodes are the cities which have not been visited in the current
tour; for the MGA, nodes are all the possible pairs of bodies
and types of transfers. For both frameworks, the probability is
distributed over all the possible choices, and then a selection
is made, according to the probability distribution. In the
case of standard ACO, the probability associated to each
city depends on a heuristic function and on the pheromone
deposited along the edge connecting the current city to the
next city. In the case of T-ACO, instead, the generation of a
solution is done in two steps: the definition of the planetary
sequence and the definition of the type of transfer. Both
steps use the same approach: the probability is computed
by taking into account the objective value of all feasible
solutions which share the same partial solution. In addition,
tabu lists are checked to avoid generating solutions which
are known to be infeasible. Tabu lists have no equivalent
in standard ACO, because for the TSP all the solutions are
feasible. Furthermore, the ants are allowed to visit the same
tour more than once, as this will reinforce the amount of
pheromone along the whole tour.

The evaluation step can be seen as the analogous of the
pheromone deposition in standard ACO, with one difference.
In T-ACO the pheromone cannot be assigned to individual
transfers: this is due to the fact that each transfer (identified
by its pair of integers) has no intrinsic value within the plan,
if disconnected from the previous transfers. In fact, the actual
value of a transfer depends on its initial conditions, which
are in turn depend on all the previous transfers.

To explain this idea, we make reference to Fig. 2 and
Fig. 3(a): the former shows a typical instance of the TSP.
In this problem, the distance between each pair of cities is
fixed, and the relative distances of n cities can be stored in a
n X n matrix [7]. This means that an edge will give the same
contribution to the overall length of the tour, regardless of
the rest of the tour. For example, Fig. 2 shows two different
tours for the given TSP instance: 1-4-3-2-5 (continuous line)
and 1-2-4-3-5 (dashed line). The edge 3-4 is shared by both
tours and will obviously contribute in the same way to their
objective functions, i.e. the total distance covered by the tour.

Fig. 2. A five-node instance of the TSP, with two possible solutions,
identified by continuous and dashed arrows.

This is not true in the MGA case. Fig. 3(a) is a representation
of a simple instance of the MGA problem: it has 3 transfers, 2
set of parameters for each transfer, 2 planets for the swing-
bys, and 1 target planet. Each node represents a possible
planet in combination with a type of transfer. The pairs of
numbers next to each node in Fig. 3(a) are the two integers
identifying the transfer in the solution vector (see section II-
A). A solution is generated by selecting one node for each
transfer, thus generating a tour which connects the starting
node to one of the final nodes. The figure represents two
possible solutions to the MGA problem: [1, 1, 2, 1, 1, 1]
(continuous line) and [2, 2, 2, 1, 1, 1] (dashed line). These
two solutions share the same parameters for the last transfer:
[1, 1]. This means that they reach the same target planet with
the same type of transfer. Because of the dependency of each
transfer on the initial conditions, it is not possible to state
that the last transfer has the same value for both solutions:
in fact, the two trajectories can be consistently different, and
lead to different final conditions and objective functions. For
this reason, it makes no sense, for example, to assign a value
to the set of parameters [1, 1] of transfer 3 in Fig. 3(a); while
it is possible to assign a value to the edge 3-4 in Fig. 2.

114@
“12v@
. 1,1
. 12@
1,1 1.1
° 22%
12@ 1.2Q 1,1 e
(@ /// 12
N21@ 2i 120 —
\ RN 11
\¥C /// "2 TAGET T -
2,2 22Q 12hg
22 49

Transfer 1 Transfer 2 Transfer 3 Transfer | Transfer2 Transfer 3

(@ (b)

Fig. 3. Two different representations of the MGA problem: a) TSP-like
representation of a three-leg MGA problem with two solutions, identified
by continuous and dashed arrows; b) expanded tree representation of the
same MGA problem.

A different representation of the continuous-line solution in
Fig. 3(a) is the one shown in Fig. 3(b) in which every branch
of the tree depends on the previous ones. In Fig. 3(b), it is
clear that the set of parameters [1, 1] for transfer 3 belongs
to two different solutions.

IV. CASE STUDIES

The proposed optimization method was applied to three
instances of the design of transfers to planet Jupiter. Many
reference solutions, computed with STOUR, can be found in
a work by Petropoulos et al. [1].

For all tests ¢y and ¢ are pre-assigned and correspond to
the launch date and direction of a known optimal solution.
The tests, in fact, aim at assessing the ability of T-ACO to
efficiently generate a complete plan given a set of initial
conditions. T-ACO was tested against two implementation
of Genetic Algorithms, the MATLAB Genetic Algorithm and
Direct Search Toolbox (GATBX) [15] and NSGA-II [16], and
an implementation of Particle Swarm Optimization (PSOt)
[17]. Settings for the typical parameters of each one of the
optimizers will be specified for each test case. Note that all
the optimizers were applied to the solution of problem (1)
after applying the solution coding in section II-A. For all
the algorithms the parameter pop defines the size of the
population. The number of generations in GA algorithms
is denoted by Generations and the number of iteration in
PSOt by the parameter iter. For the specific meaning of the
parameters StallGenLimit, pcross_bin, pmut_bin, iiw and fiw,
please refer respectively to [15], [16], and [17].

Due to the stochastic nature of the heuristics used in the
tests, all the algorithms were run for 200 times. Two perfor-
mance indexes are used to compare T-ACO against the other
global optimizers: the percentage of times an algorithm finds
feasible solutions and the percentage of times the objective
value y of the feasible solutions is y < 4+ ¢, or success rate.
The value 3 is the best known objective function for a given
problem. According to the theory developed in [18] 200 runs
give an error in the determination for the exact success rate
of less than 5% with 95% confidence.

Some preliminary tests showed that the best performance of
T-ACO is achieved if the algorithm is run in 2 steps, using
different sets of parameters. In particular, in the first step,
the weights Wpianet, Wiype are set to 0. Remembering Eq.
(3) and Eq. (4), this choice translates into an initial pure
random search. In fact, the solutions in the feasible list do
not alter the probability distribution. On the other hand, the
probability of tabu partial solutions is still set to zero to avoid
their re-exploration. In the second step, weights are set to
non-null values, to intensify the exploration around known
feasible solutions. The values of Wpianet; Weype are chosen
such that:

Wplanet Wtype = w - g)

where ¢ is the expected minimum value for the objective
function. In this way, by choosing for example w = 1, a 1
is added to the probability of a given element every time a
matching solution with objective ¢ appears in the feasible list.
The value of the added probability is higher if the objective
value of the matching feasible solution is lower than .

All the tests were run on an Intel® Pentium-4, 3 GHz
machine running Microsoft® Windows® XP.

A. Transfers to Jupiter via Venus,Earth and Mars

In this mission, the spacecraft departs from Earth to reach
a scientific orbit around Jupiter with minimum relative
arrival velocity v.,. We considered the launch date ¢y =
3308.5MJD2000 to reproduce one of the results in [1]. T-
ACO was applied to the design of three different instances
of this problem: A) Earth-Jupiter transfer via gravity assist of
Venus and Earth only, with maximum three swing-by’s and
no resonant transfers, B) Earth-Jupiter transfer via gravity
assist of Venus and Earth only, with maximum four swing-
by’s and no resonant transfers, C)Earth-Jupiter transfer via
gravity assist of Venus, Earth and Mars, with resonant
transfers. The launch angle was set to ¢y = 3.3744 radians
after some preliminary investigations. The range of values
for all the planet-to-planet transfers, except for the last one,
are reported in Table I for each one of the instances of the
problem.

TABLE I
SETTINGS FOR THE FOUR INSTANCES OF THE PROBLEM.

ID N. op oft Q2 Q3 Q4 Qs
GA’s (km/s)

A 3 {Earth, {-0.05, -0.02, [0} 1] {0,1} {0.1}
Venus, -.01, 0 .01,
Jupiter} 0.02, 0.05}

B 4 {Earth, {-0.05, -0.02, [4] [9] {0,1} {o0,1}
Venus, -.01,0,.01,
Jupiter} 0.02, 0.05}

C 4 {Earth, {-0.05, -0.02, [7] {0,1} {o,1} {o,1}
Venus, -.01,0,0.01,
Mars, 0.02,0.05}
Jupiter}

The last planet-to-planet transfer is always to Jupiter and fol-
lowing sets of values apply:Qp = {Jupiter},Q; = 0,95 =
0,03 = 0,04 =0, Q5 = 0.

With the sets of values presented above, the average time
for the evaluation of one plan is 0.01 s. Depending on
the instance the number of plans (feasible and infeasible)
is: 592704 for instance A, 49787136 for instance B, and
2.5176e+009 for instance C. Thus, a systematic scan of all
the possibilities would require respectively: 1.65 hours, 13.83
hours, 6993.3 hours.

Since the transfer is towards the outer planets of the so-
lar system the total time of flight tends to be very long.
Therefore, the objective function is the weighted sum of
the total time of flight 7" and the vo: ¥ = Voo + 0T ,the
weight o = 1/1000 km/s/d. The total time of flight was
limited to a maximum of 100 years. This bound may seem
to be too high, since a realistic time span of a transfer to
Jupiter is around 6 years. However, the model considers all
the solutions longer than the specified threshold on the time
of flight to be infeasible, and the optimizer saves them in
the tabu lists. Therefore, limiting the time of flight to lower
values would over-constrain the search for optimal solutions.
Better results are obtained by allowing long solutions to be
returned as feasible, and introducing their duration into the
objective function.

TABLE II
SETTINGS OF GATBX, NSGA-II AND PSO.

GATBX NSGA-II PSOt
Par. Value Par. Value Par. Value
StallGenLimit ~ +Inf pcross_bin 0.5 iiw 0.9
pmut_bin 0.5 fiw 0.4
gen. 23 gen. 23 iter 110
pop 200 pop 200 pop 40

T-ACO was run for 600 iterations with both weights equal
to zero, and for 600 with the weights wpianet, Weype = 209
km/s and § = 3 km/s. These values provide good results on
the same optimization problem and correspond to about 4300
function evaluations for instance A and 4800 for instance B.
However, because of the normalization in Eq. (5), the weight
values appear to have general validity, and can be applied to
other transfer problems, as was shown in previous works
[14]. With these settings, a run of T-ACO takes, on average,
60s for instance A, 150 s for instance B, 250 s for instance
C. This is considerably faster than the exhaustive scan of the
solution space.

NSGA-II, PSOt and GATBX were run at first for the same
number of function evaluations of T-ACO and then for a
number of functions valuations comparable to the number of
calls to tabu and feasible lists. In fact, in T-ACO, the ants
call the lists rather than calling the model to evaluate the
feasibility or optimality of a particular path. If the cost of
running the model is higher than accessing the lists then T-
ACO is more competitive. At present the access to the list
is not optimal and is coded in MATLAB. Therefore, it is
not competitive against fully compiled codes like NSGA-IIL.
Furthermore, T-ACO often finds solutions that are feasible up
to the last transfer, while the other algorithms evaluate many
infeasible solutions. Infeasible solutions are computationally
faster than feasible ones because the trajectory model exits
at some intermediate leg.

The settings used for GATBX and NSGA-II are reported in
Table II. The comparative results for the two sets of runs
are shown in Table III. The results in brackets are for the
same number of function evaluations of T-ACO. It can be
seen that T-ACO found feasible solutions in 100% of the the
runs for all the instances. GATBX instead finds only 17%
of feasible solutions for instance A, 55% for instance B and
74.5% for instance C. NSGA-II behaves better with results
comparable to T-ACO if the number of function evaluations
is substantially extended to match the run time. If the number
of function evaluations is maintained constant, instead, the
performance drops significantly. Note also that the quality of
the solutions found by T-ACO is better than for the other
algorithms. PSOt performs poorly in all cases, which might
be due to a bad setting of the algorithm.

Some interesting solutions found with T-ACO can be found
in Table IV and are compared to the reference solution, fully
optimized, in [1].

TABLE III
PERFORMANCES OF T-ACO, GATBX, NSGA-II AND PSOT ON THE 3
INSTANCES OF THE EARTH-JUPITER TRANSFER PROBLEM.

demonstrated the remarkable ability to find good solutions
with a very high success rate, performing better than known
implementations of Genetic Algorithms and PSO.

As T-ACO requires very little information on the MGA
problem under investigation, it represents a valuable tool
for the complete automatic design of future space missions.
Furthermore, the proposed use of tabu lists appears to be
an effective solution for those planning problems in which
the value of one segment of the plan depends on all the
preceding segments. Future work aims at a more efficient
handling of the lists, which is currently the major bottleneck

Optimizer Average best value % runs < § 4+ € % feasible runs
(km/s)

Instance A 4 + e=11.5km/s

T-ACO 11.47 64.5% 100%

GATBX 11.50(11.49) 16%(12%) 17.5%(24%)

NSGA-II 11.51(11.54) 26% (7%) 91%(46%)

PSOt 11.54(11.57) 19%(0.5%) 5%(4%)

Instance B g + e=12.0km/s

T-ACO 14.62 14.5% 100%

GATBX 15.67(15.27) 6.5%(4%) 55.5%(41%)

NSGA-II 15.10(17.1) 16.5%(7%) 100%(85.5%)

PSOt 16.53(17.03) 0%(0%) 19.5%(7.5%)

Instance C g + e=14.0km/s

T-ACO 13.63 90% 100%

GATBX 14.81 19% 74.5%

NSGA-II 13.19 (16.68) 99.5%(6%) 100% (98.5%)

PSOt 13.77(15.91) 52% (12%) 75% (66%)

TABLE IV
SOME INTERESTING SOLUTIONS FOUND BY T-ACO.

Reference v0=3.68 T=6.3 Voo = 5.3

[km/s] [yl [km/s]
Sequence \' E E J
mpgsny [km/s] 0.0 0.0 0.0 0
Nrevl 0 0 0 0
Nrev?2 0 0 0 0
T-ACO v0=3.31 T=6.72 v =5.62

[km/s] [yl [km/s]
Sequence \Y E E J
mpgny [km/s] 0.05 0.02 -0.01 0
Nrevl 0 0 0 0
Nrev? 0 0 0 0
fo/a 0 1 1 0
fi/2 0 1 0 1
T-ACO v0=3.33 T=17.8 Voo = 5.51

[km/s] [yl [km/s]
Sequence \Y E E E J
mpsny [km/s] 0.05 0.0 -0.02 005 0
Nrevl 0 0 0 0 0
Nrev2 0 0 0 0 0
Ip/a 0 1 1 1 0
fi/2 0 0 0 1 1

ACKNOWLEDGEMENTS

This work was done when Matteo Ceriotti was a PhD student
in the Space Advanced Research Team of the University of
Glasgow.

V. CONCLUSIONS

The paper introduced a modified Ant Colony Optimization
algorithm, called T-ACO, for planning problems in which
the value associated to the outcome of an action depends on
the history of all the preceding actions. T-ACO was applied
to the solution of the MGA planning problem in which, the
number of possible paths increases exponentially with the
number of planetary encounters.

T-ACO operates an effective search thank to the use of an
external archive of feasible and tabu solutions. The algorithm

of the T-ACO implementation.

(1]

(2]

(3]

[4]

(5]

(6]

(7]
(8]

(91

[10]

[11]

[12]

[13]

[14]

[15]

[16]

(17]

[18]

REFERENCES

A. E. Petropoulos, J. M. Longuski, and E. P. Bonfiglio, “Trajectories
to jupiter via gravity assists from Venus, Earth, and Mars,” Journal of
Spacecraft and Rockets, vol. 37, no. 6, pp. 776-783, 2000.

M. Vasile and P. D. Pascale, “Preliminary design of multiple gravity-
assist trajectories,” Journal of Spacecraft and Rockets, vol. 43, no. 4,
pp. 794-805, 2006.

I. M. Ross and C. N. D’Souza, “Hybrid optimal control framework
for mission planning,” Journal of Guidance, Control, and Dynamics,
vol. 28, no. 4, pp. 686—697, 2005.

0. V. Stryk and M. Glocker, “Decomposition of mixed-integer optimal
control problems using branch and bound and sparse direct colloca-
tion,” in ADPM 2000 The 4th International Conference on Automation
of Mixed Processes: Hybrid Dynamic Systems, Dortmund, Germany,
2000.

B. J. Wall and B. A. Conway, “Genetic algorithms applied to the
solution of hybrid optimal control problems in astrodynamics,” Journal
of Global Optimization archive, vol. 44, pp. 493-508, 2009.

A. E. Rizzoli, R. Montemanni, E. Lucibello, and L. Gambardella,
“Ant colony optimization for real-world vehicle routing problems. from
theory to applications,” Swarm Intelligence, vol. 1, pp. 135-151, 2007.
M. Dorigo and T. Stiitzle, Ant colony optimization. — Cambridge,
Massachusetts: The MIT Press, 2004.

M. Dorigo and L. M. Gambardella, “Ant colony system: A cooperative
learning approach to the traveling salesman problem,” IEEE Transac-
tions on Evolutionary Computation, vol. 1, no. 1, pp. 53-66, 1997.
D. Merkle, M. Middendorf, and H. Schmeck, “Ant colony optimization
for resource-constrained project scheduling,” IEEE Transactions on
Evolutionary Computation, vol. 6, no. 4, pp. 333-346, 2002.

C. Blum, “Beam-ACO hybridizing ant colony optimization with beam
search: An application to open shop scheduling,” Computers and
Operations Research, vol. 32, no. 6, pp. 1565-1591, 2005.

V. P. Eswaramurthy and A. Tamilarasi, “Hybridization of ant colony
optimization strategies in tabu search for solving job shop scheduling
problems,” International Journal of Information and Management
Sciences, vol. 20, pp. 173-189, 2009.

K.-L. Huang and C.-J. Liao, “Ant colony optimization combined with
taboo search for the job shop scheduling problem,” Computers and
Operations Research, vol. 35, pp. 1030-1046, 2008.

A. N. Sinha, N. Das, and G. Sahoo, “Ant colony based hybrid
optimization for data clustering,” Kybernetes, vol. 36, no. 2, pp. 175—
191, 2007.

M. Ceriotti and M. Vasile, “Automatic mga trajectory planning with
a modified ant colony optimization algorithm,” in Proceedings of 21st
International Symposium on Space Flight Dynamics, Toulouse, France,
2009.

D. E. Goldberg, Genetic algorithms in search, optimization and
machine learning. Boston, MA, USA: Addison Wesley, 1989.

K. Deb, S. Agrawal, A. Pratap, and T. Meyarivan, “A fast elitist non-
dominated sorting genetic algorithm for multi-objective optimization:
NSGA-IL” in Proceedings of 6th International Conference on Parallel
Problem Solving from Nature, PPSN VI, Paris, France, 2000.

B. Birge, “Psot, a particle swarm optimization toolbox for matlab,” in
Proceedings of the IEEE Swarm Intelligence Symposium, 2003.

M. Vasile, E. Minisci, and M. Locatelli, “A dynamical system perspec-
tive on evolutionary heuristics applied to space trajectory optimization
problems,” in Proceedings of the IEEE Congress on Evolutionary
Computation, CEC 2009, Trondheim, Norway, 2009.

