Picture of wind turbine against blue sky

Open Access research with a real impact...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs.

The Energy Systems Research Unit (ESRU) within Strathclyde's Department of Mechanical and Aerospace Engineering is producing Open Access research that can help society deploy and optimise renewable energy systems, such as wind turbine technology.

Explore wind turbine research in Strathprints

Explore all of Strathclyde's Open Access research content

An RNA Aptamer that Induces Transcription

Hunsicker, A. and Steber, M. and Mayer, G. and Meitert, J. and Klotzsche, M. and Blind, M. and Hillen, W. and Berens, C. (2009) An RNA Aptamer that Induces Transcription. Chemistry and Biology, 16. pp. 173-180. ISSN 1074-5521

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

We identified an RNA aptamer that induces TetR-controlled gene expression in Escherichia coli when expressed in the cell. The aptamer was found by a combined approach of in vitro selection for TetR binding and in vivo screening for TetR induction. The smallest active aptamer folds into a stem-loop with an internal loop interrupting the stem. Mutational analysis in vivo and in-line probing in vitro reveal this loop to be the protein binding site. The TetR-inducing activity of the aptamer directly correlates with its stability and the best construct is as efficient as the natural inducer tetracycline. Because of its small size, high induction efficiency, and the stability of the TetR aptamer under in vivo conditions, it is well suited to be an alternative RNA-based inducer of TetR-controlled gene expression.