Picture of a black hole

Strathclyde Open Access research that creates ripples...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of research papers by University of Strathclyde researchers, including by Strathclyde physicists involved in observing gravitational waves and black hole mergers as part of the Laser Interferometer Gravitational-Wave Observatory (LIGO) - but also other internationally significant research from the Department of Physics. Discover why Strathclyde's physics research is making ripples...

Strathprints also exposes world leading research from the Faculties of Science, Engineering, Humanities & Social Sciences, and from the Strathclyde Business School.

Discover more...

Complex heterogeneous precipitation in titanium-niobium microalloyed Al-killed HSLA steels-II. Non-titanium based particles

Craven, A.J. and He, K. and Garvie, L.A.J. and Baker, T.N. (2000) Complex heterogeneous precipitation in titanium-niobium microalloyed Al-killed HSLA steels-II. Non-titanium based particles. Acta Materialia, 48 (15). pp. 3869-3878. ISSN 1359-6454

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

An analytical electron microscopical investigation of three Ti-Nb Al deoxidized steels with different N:Ti ratios has been undertaken. In each steel, a large number of small (<10 nm) particles were observed. Parallel electron energy loss spectroscopy (PEELS) showed that their compositions in the three steels were consistent with those reported for the caps on the TiN cores in the equivalent steels in Part I, i.e. NbC0.7N0.3, NbC and (Nb0.7Ti0.3)C, respectively. The Nb incorporated in these caps added to that dissolved in the TiN cores results in a significant reduction in the number of small particles which give effective dispersion hardening. The size of this reduction depends on a number of competing factors. AlN precipitation also occurred in the as-rolled steel with highest N content and in the normalized steels with the two higher N contents. AlN is usually expected to control the austenite grain growth. NbC-based material grew on the AlN. A dendritic complex based on the iso-structural compounds MnSiN2 and AlN was observed in the high N steel.