Picture of person typing on laptop with programming code visible on the laptop screen

World class computing and information science research at Strathclyde...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by researchers from the Department of Computer & Information Sciences involved in mathematically structured programming, similarity and metric search, computer security, software systems, combinatronics and digital health.

The Department also includes the iSchool Research Group, which performs leading research into socio-technical phenomena and topics such as information retrieval and information seeking behaviour.

Explore

The effect of growth temperature on the luminescence and structural properties of gan : tm films grown by gas-source mbe

Roqan, I.S. and Nogales, E. and O'Donnell, K.P. and Trager-Cowan, C. and Martin, R.W. and Halambalakis, G. and Briot, O. (2008) The effect of growth temperature on the luminescence and structural properties of gan : tm films grown by gas-source mbe. Journal of Crystal Growth, 310 (18). pp. 4069-4072. ISSN 0022-0248

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

During molecular beam epitaxy of GaN:Tm films, substrate temperature strongly influences the rare earth incorporation, surface morphology and luminescence spectrum. The Tm incorporation into films grown between 730 and 830 °C was estimated by wavelength-dispersive X-ray (WDX) spectroscopy. Comparative WDX, atomic force microscopy (AFM) and cathodoluminescence (CL) mappings reveal that at an optimal growth temperature between 775 and 780 °C, a high Tm content (2.2 at%) and a smooth surface morphology can be obtained, leading to an intense sharp Tm3+ emission. For lower substrate temperatures, Ga droplets and large (8-15 μm) circular pits mar the sample surface; for higher temperatures, the sharp CL lines disappear due to low Tm content (0.8 at%).