Picture of a black hole

Strathclyde Open Access research that creates ripples...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of research papers by University of Strathclyde researchers, including by Strathclyde physicists involved in observing gravitational waves and black hole mergers as part of the Laser Interferometer Gravitational-Wave Observatory (LIGO) - but also other internationally significant research from the Department of Physics. Discover why Strathclyde's physics research is making ripples...

Strathprints also exposes world leading research from the Faculties of Science, Engineering, Humanities & Social Sciences, and from the Strathclyde Business School.

Discover more...

Photoluminescence of CuInS2 single crystals grown by traveling heater and chemical vapor transport methods

Mudryi, A.V. and Karotki, A.V. and Yakushev, M.V. and Martin, R.W. (2009) Photoluminescence of CuInS2 single crystals grown by traveling heater and chemical vapor transport methods. Journal of Applied Spectroscopy, 76 (2). pp. 215-219. ISSN 0021-9037

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

Photoluminescence of CuInS2 single crystals grown by both the traveling heater method (THM) and chemical vapor transport (CVT) has been investigated at 4.2, 78, and 300 K. Intense emission in the near-band-edge region caused by free and bound excitons has been detected for both types of crystals. Taking into account the energy position of the luminescence line of the ground (n = 1) and first excited (n = 2) states, the binding energy for free A excitons has been estimated to be about 19.7 and 18.5 meV for CuInS2 grown by CVT and THM, respectively.