Picture of smart phone in human hand

World leading smartphone and mobile technology research at Strathclyde...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by Strathclyde researchers from the Department of Computer & Information Sciences involved in researching exciting new applications for mobile and smartphone technology. But the transformative application of mobile technologies is also the focus of research within disciplines as diverse as Electronic & Electrical Engineering, Marketing, Human Resource Management and Biomedical Enginering, among others.

Explore Strathclyde's Open Access research on smartphone technology now...

Mast cell degranulation - a mechanism for the anti-arrhythmic effect of endothelin-1?

Walsh, S.K. and Kane, K.A. and Wainwright, C.L. (2009) Mast cell degranulation - a mechanism for the anti-arrhythmic effect of endothelin-1? British Journal of Pharmacology, 157 (5). pp. 716-723. ISSN 1476-5381

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

The aim of this study was to investigate whether the previously reported anti-arrhythmic effect of endothelin-1 (ET-1) is mediated by degranulation of cardiac mast cells prior to myocardial ischaemia. Male Sprague-Dawley rats received either ET-1 (1.6 nmol·kg−1) in the presence or absence of disodium cromoglycate (DSCG; 20 mg·kg−1·h−1) prior to coronary artery occlusion (CAO). In separate experiments rats were given compound 48/80 (50 µg·kg−1) to compare the effects of ET-1 with those of a known mast cell degranulator. Ischaemia-induced ventricular arrhythmias were detected through continuous monitoring of a lead I electrocardiogram. After 30 min of CAO, the hearts were removed and mast cell degranulation determined by histological analysis. A parallel series of sham groups were performed to determine the direct effects of ET-1 and compound 48/80 on mast cell degranulation in the absence of ischaemia. ET-1 and compound 48/80 both exerted profound anti-arrhythmic effects, significantly reducing the total number of ventricular ectopic beats (P < 0.001) and the incidence of ventricular fibrillation (P < 0.05). These anti-arrhythmic effects were abolished by concomitant DSCG infusion prior to CAO. In sham animals ET-1 and compound 48/80 both induced mast cell degranulation (P < 0.001), an effect which was abolished by DSCG, confirming their ability to induce degranulation of mast cells. These results demonstrate for the first time that when given prior to ischaemia ET-1 mediates its anti-arrhythmic effects, at least in part, via cardiac mast cell degranulation.