Picture of athlete cycling

Open Access research with a real impact on health...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by Strathclyde researchers, including by researchers from the Physical Activity for Health Group based within the School of Psychological Sciences & Health. Research here seeks to better understand how and why physical activity improves health, gain a better understanding of the amount, intensity, and type of physical activity needed for health benefits, and evaluate the effect of interventions to promote physical activity.

Explore open research content by Physical Activity for Health...

Luminescence of Eu ions in AlxGa1-xN across the entire alloy composition range

Wang, K. and O'Donnell, K.P. and Hourahine, B. and Martin, R.W. and Watson, I.M. and Lorenz, K. and Alves, E. (2009) Luminescence of Eu ions in AlxGa1-xN across the entire alloy composition range. Physical Review B, 80 (12). ISSN 1098-0121

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

Photoluminescence (PL) and PL excitation (PLE) spectra of Eu-implanted AlxGa1-xN are obtained across the whole alloy composition range. The dominant D-5(0)-F-7(2) emission band broadens and then narrows as x increases from 0 to 1 while the peak shifts monotonically. This behavior is surprisingly similar to the broadening of excitons in a semiconductor alloy caused by composition fluctuations [E. F. Schubert et al., Phys. Rev. B 30, 813 (1984). PLE spectra reveal a steplike AlxGa1-xN band-edge absorption and two "subgap" bands X-1,X-2:X-1 peaks at 3.26 eV in GaN and shifts linearly to 3.54 eV in AlN. For x > 0.6, X-2 emerges approximately 1 eV higher in energy than X-1 and shifts in a similar way. We propose that X-1,X-2 involve creation of core-excitonic complexes of Eu emitting centers.