Picture of smart phone in human hand

World leading smartphone and mobile technology research at Strathclyde...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by Strathclyde researchers from the Department of Computer & Information Sciences involved in researching exciting new applications for mobile and smartphone technology. But the transformative application of mobile technologies is also the focus of research within disciplines as diverse as Electronic & Electrical Engineering, Marketing, Human Resource Management and Biomedical Enginering, among others.

Explore Strathclyde's Open Access research on smartphone technology now...

Precise quantum tomography of photon pairs with entangled orbital angular momentum

Jack, B. and Leach, J. and Ritsch, H. and Barnett, S.M. and Padgett, M.J. and Franke-Arnold, S. (2009) Precise quantum tomography of photon pairs with entangled orbital angular momentum. New Journal of Physics, 11. pp. 1-12. ISSN 1367-2630

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

We report a high fidelity tomographic reconstruction of the quantum state of photon pairs generated by parametric down-conversion with orbital angular momentum (OAM) entanglement. Our tomography method allows us to estimate an upper and lower bound for the entanglement between the down-converted photons. We investigate the two-dimensional state subspace defined by the OAM states ± and superpositions thereof, with =1, 2, ..., 30. We find that the reconstructed density matrix, even for OAMs up to around =20, is close to that of a maximally entangled Bell state with a fidelity in the range between F=0.979 and F=0.814. This demonstrates that, although the single count-rate diminishes with increasing , entanglement persists in a large dimensional state space.