Picture of athlete cycling

Open Access research with a real impact on health...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by Strathclyde researchers, including by researchers from the Physical Activity for Health Group based within the School of Psychological Sciences & Health. Research here seeks to better understand how and why physical activity improves health, gain a better understanding of the amount, intensity, and type of physical activity needed for health benefits, and evaluate the effect of interventions to promote physical activity.

Explore open research content by Physical Activity for Health...

Precise quantum tomography of photon pairs with entangled orbital angular momentum

Jack, B. and Leach, J. and Ritsch, H. and Barnett, S.M. and Padgett, M.J. and Franke-Arnold, S. (2009) Precise quantum tomography of photon pairs with entangled orbital angular momentum. New Journal of Physics, 11. ISSN 1367-2630

[img]
Preview
Text (Jack-etal-NJP-2009-Precise-quantum-tomography-of-photon-pairs-with-entangled-orbital-angular-momentum)
Jack_etal_NJP_2009_Precise_quantum_tomography_of_photon_pairs_with_entangled_orbital_angular_momentum.pdf - Final Published Version
License: Creative Commons Attribution-NonCommercial-ShareAlike 3.0 logo

Download (1MB) | Preview

Abstract

We report a high fidelity tomographic reconstruction of the quantum state of photon pairs generated by parametric down-conversion with orbital angular momentum (OAM) entanglement. Our tomography method allows us to estimate an upper and lower bound for the entanglement between the down-converted photons. We investigate the two-dimensional state subspace defined by the OAM states ± and superpositions thereof, with =1, 2, ..., 30. We find that the reconstructed density matrix, even for OAMs up to around =20, is close to that of a maximally entangled Bell state with a fidelity in the range between F=0.979 and F=0.814. This demonstrates that, although the single count-rate diminishes with increasing , entanglement persists in a large dimensional state space.