Picture of athlete cycling

Open Access research with a real impact on health...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by Strathclyde researchers, including by researchers from the Physical Activity for Health Group based within the School of Psychological Sciences & Health. Research here seeks to better understand how and why physical activity improves health, gain a better understanding of the amount, intensity, and type of physical activity needed for health benefits, and evaluate the effect of interventions to promote physical activity.

Explore open research content by Physical Activity for Health...

Two-to-one resonant multi-modal dynamics of horizontal/inclined cables. Part II: internal resonance activation, reduced-order models and nonlinear normal modes

Srinil, N. and Rega, G. (2007) Two-to-one resonant multi-modal dynamics of horizontal/inclined cables. Part II: internal resonance activation, reduced-order models and nonlinear normal modes. Nonlinear Dynamics, 48 (3). pp. 253-274. ISSN 0924-090X

This is the latest version of this item.

[img]
Preview
PDF (strathprints018556.pdf)
strathprints018556.pdf

Download (4MB) | Preview

Abstract

Resonant multi-modal dynamics due to planar 2:1 internal resonances in the nonlinear, finite-amplitude, free vibrations of horizontal/inclined cables are parametrically investigated based on the second-order multiple scales solution in Part I [1]. The already validated kinematically non-condensed cable model accounts for the effects of both non-linear dynamic extensibility and system asymmetry due to inclined sagged configurations. Actual activation of 2:1 resonances is discussed, enlightening on a remarkable qualitative difference of horizontal/inclined cables as regards non-linear orthogonality properties of normal modes. Based on the analysis of modal contribution and solution convergence of various resonant cables, hints are obtained on proper reduced-order model selections from the asymptotic solution accounting for higher-order effects of quadratic nonlinearities. The dependence of resonant dynamics on coupled vibration amplitudes, and the significant effects of cable sag, inclination and extensibility on system non-linear behavior are highlighted, along with meaningful contributions of longitudinal dynamics. The spatio-temporal variation of non-linear dynamic configurations and dynamic tensions associated with 2:1 resonant non-linear normal modes is illustrated. Overall, the analytical predictions are validated by finite difference-based numerical investigations of the original partial-differential equations of motion.

Available Versions of this Item