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Abstract. Resonant multi-modal dynamics due to planar 2:1 internal resonances in the non-

linear, finite-amplitude, free vibrations of horizontal/inclined cables are parametrically 

investigated based on the second-order multiple scales solution in Part I [1]. The already 

validated kinematically non-condensed cable model accounts for the effects of both non-linear 

dynamic extensibility and system asymmetry due to inclined sagged configurations. Actual 

activation of 2:1 resonances is discussed, enlightening on a remarkable qualitative difference of 

horizontal/inclined cables as regards non-linear orthogonality properties of normal modes. Based 

on the analysis of modal contribution and solution convergence of various resonant cables, hints 

are obtained on proper reduced-order model selections from the asymptotic solution accounting 

for higher-order effects of quadratic nonlinearities. The dependence of resonant dynamics on 

coupled vibration amplitudes, and the significant effects of cable sag, inclination and 

extensibility on system non-linear behavior are highlighted, along with meaningful contributions 

of longitudinal dynamics. The spatio-temporal variation of non-linear dynamic configurations 

and dynamic tensions associated with 2:1 resonant non-linear normal modes is illustrated. 

Overall, the analytical predictions are validated by finite difference-based numerical 

investigations of the original partial-differential equations of motion. 
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1. Introduction 

 The goal of this paper is to parametrically investigate the multi-modal dynamics due to 

planar 2:1 internal resonances in the finite-amplitude free vibrations of horizontal/inclined cables 

based on the approximate closed-form solution obtained by the method of multiple scales 

(MMS) in Part I [1]. The underlying mechanical formulation is based on the kinematically non-

condensed cable model accounting for the effects of both non-linear dynamic extensibility and 

system asymmetry due to inclined sagged configurations.   

 The suspended cable, aligned with the global Cartesian co-ordinate system, refers to Figure 1 

in Part I [1], with an inclination angle θ assigned by keeping the horizontal span XH fixed and 

varying the vertical span YH. The function y = y(x), where x is the spatially independent co-

ordinate, describes the cable sagged static equilibrium, and the ensuing planar dynamics about it 

is described by the coupled longitudinal (horizontal) u and vertical v displacements. The 

dynamic behavior of horizontal/inclined cables is governed by several geometrical and 

mechanical parameters that can be collected in the unique parameter [2] 

           λ π = ( ) ( )2 31 cosC aw S EA Tπ θ ,             (1) 

which accounts for also the inclination θ effects, S being the cable equilibrium length, E the 

cable Young�s modulus, A its uniform cross-sectional area, wC its self-weight per unit 

unstretched length, and Ta the static tension at the cable point where the local inclination angle is 

approximately equal to θ. The input values of EA and wC are fixed for a given θ, whereas the 

cable static tension (or its horizontal component H) is adjusted to attain the varying λ⁄π, which 

entails varying values of Ta, S, and cable sag-to-span ratio d. Following [1], a low-extensible 

cable with a fixed parameter EA/wCXH ≈ 2580.35 is analyzed for different θ values. Variation of 

the lowest six planar frequencies ω/π, non-dimensionalized with respect to the fundamental 

frequency of the corresponding taut string, is illustrated versus λ/π in Figures 1a and 1b for the 

horizontal (θ = 0
o
) and inclined (θ = 30

o
) cables, respectively. 
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 The distinguishing linear dynamic features between horizontal and inclined cables are 

apparent from Figure 1, namely (i) the modification from crossover (Figure 1a) to avoidance or 

veering (Figure 1b) phenomenon, and (ii) the associated transition from purely symmetric/anti-

symmetric modes to hybrid or asymmetric modes
�
. Amongst other planar (as well as non-planar) 

internal resonances, nearly tuned planar 2:1 resonances, each one involving the pair of modes (r, 

s) indicated along a vertical dotted line, may occur away from (e.g., λ/π ≈ 1.28, 2.95, 3.23 and 

5.48) crossover/avoidance (λ/π ≈ 2nπ, n=1, 2,..), whereas nearly tuned planar 1:1 or 2:1 

resonances may occur at each crossover/avoidance, involving also out-of-plane modes, thus 

leading to a multiple internal resonance [3]. Herein, we aim at characterizing the non-linear 

dynamic features of horizontal/inclined cables away from crossover/avoidance, which are more 

likely responsible for purely planar resonant dynamics � rarely investigated in the literature �, 

along with the combined effects of cable sag and inclination. Yet, near-avoidance inclined cables 

having high modal density will also be analyzed here in order to clarify the strong coupling role 

of the two coexisting hybrid modes and their significant contribution to system non-linear 

dynamics. 

 The paper is organized as follows. In Section 2, the actual activation of planar 2:1 internal 

resonances in various horizontal/inclined cables is investigated by taking into account the non-

linear orthogonality properties of normal modes. The first-order interaction coefficients of 

different horizontal cable models are also discussed. Then, on accounting for second-order 

quadratic non-linear effects, a multi-dimensional, resonant/non-resonant, modal contribution 

analysis of the MMS solution is made in Section 3, and the solution convergence is evaluated in 

Section 4 in terms of resonantly coupled amplitudes and frequencies. Because the accurate 

determination of cable non-linear modal shapes is of primary interest from a practical point of 

view as regards long-term dynamic tension effects, the coupled dynamic configurations of 

� 
Planar mode shapes in Figure 1 are resolved in the local co-ordinate system, with the displacement being normal 

to the tangential axis of cable centerline. 
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resonant non-linear normal modes (NNMs) are determined in Section 5, whereas Section 6 

addresses the cable non-linear dynamic tension and its space-time modification. Overall results 

highlight significant effects of cable sag, inclination and extensibility on system non-linear 

dynamics. Numerical time histories of the finite difference-based solution, validating the 

analytical predictions and showing modal interaction features of the original system, are 

presented in Section 7. The paper ends with a summary and some conclusions. Throughout the 

paper, reference to Part I [1] is made, where needed, by labeling the relevant Section, Figure, 

Table and Equation number with the preceding roman �I� symbol. 

 

2. Internal Resonance Activation 

 Actual activation (non-activation) of planar 2:1 resonance involving a high-frequency (s) and 

low-frequency (r) mode is governed by the first-order quadratic coefficient ℜ  obtained by the 

MMS, when it is different from (equal to) zero [4]. Based on the kinematically non-condensed 

model holding for a generic inclined cable, it reads [1]  

 

1

3

0

3 1 3
2 ,

2 2 2 2
s r r r r r r s r r r r r r

y
y y dx

α φ φ φ φ ϕ ϕ ϕ ϕ φ φ φ ϕ ϕ ϕ
ρ

′    ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ℜ = − + + + + +    
    

∫         (2) 

where a prime denotes differentiation with respect to x, 21 yρ ′= + , Į = EA/H, φm and ϕm are 

the longitudinal and vertical shape functions of the m
 
(m = r, s) planar mode obtained by the 

Galerkin method using a properly truncated N sine-based series, see Section I.2.4. To discuss 

also the strain condensation effects on the resonance activation, we evaluate ℜ  with the 

condensed model of horizontal cable as well,  

             
1 1 1 1

0 0 0 0

1
2 ,

2
s r r s r rdx y dx y dx dxα ϕ ϕ ϕ ϕ ϕ ϕ

 
′′ ′ ′ ′′ ′ ′ℜ = + 

 
∫ ∫ ∫ ∫             (3) 

 

whose ϕm are available in closed form, see Appendix I.A. The ℜ  value in Equations (2) and (3) 

is seen to depend on the contribution of three factors: the mechanical coefficient Į, the normal 

modes (φm, ϕm) and the static shape (y′, y′′,ρ) function, the latter ensuing from Equation I.11 

valid for small-sagged arbitrarily inclined cables. 
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2.1 Horizontal Cables 

 Previous analytical [4] and numerical [5] investigations have shown that a planar 2:1 internal 

resonance in horizontal cables is not activated when the high-frequency mode is anti-symmetric, 

even though a 2:1 (ωs:ωr) frequency ratio is satisfied. Such circumstance is herein ensured in 

Table 1 by the vanishing of ℜ  coefficients of both the non-condensed (NC) and condensed (CC) 

crossover cables (λ/π ≈ 2, 4) because of the non-linear orthogonality properties of the anti-

symmetric/symmetric (high/low -frequency) modes. On the other hand, due to the involvement 

of just symmetric high-frequency s modes for non-crossover (λ/π ≈ 1.28, 2.95, 3.23, 5.48) and 

crossover (λ/π ≈ 4) cables (Figure 1a) having different geometrical (d) and mechanical (α) 

properties, the 2:1 resonances are activated for both NC and CC models ( 0ℜ ≠ ), regardless of 

the low-frequency r modes being symmetric or anti-symmetric.  

 To highlight also the ρ-term effects � already addressed through numerical studies in Section 

I.5.3 � on the ℜ  values of the resonantly activated cables, two NC cases, i.e., with ρ ≠ 1 and ρ ≈ 

1, are considered. It can be seen that the ℜ  values of the NC (ρ ≈ 1) and CC models are slightly 

different from each other, whereas the latter differ more significantly from those obtained with 

the general NC (ρ ≠ 1) model, notwithstanding the corresponding sag d values are small for all 

considered cables (i.e., d < 1:8, see [6]). 

 Generally speaking, these analytical results are in agreement with the numerical results in 

Section I.5.3, which reveal how accounting (ρ ≠ 1) or not (ρ ≈ 1) for the varying ρ-terms in the 

approximate PDEs of motion of the NC model entails, at least, quantitative differences in the 

non-linear dynamic responses, depending on also the system parameters and initial conditions. In 

turn, the difference between the CC- and NC-based ℜ values stands in the influence of the 

kinematic condensation procedure applied to the CC model, which essentially neglects the 

higher-order non-linear effects of longitudinal dynamic deformation on the physics of the 

problem. Overall, neglecting the longitudinal inertia and the associated coupled displacement 
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contributions affects the resonance activation only slightly through the ℜ values appearing at the 

first-order MMS. However, when continuing the MMS analysis to second order, the 

discrepancies in the quadratic and, especially, cubic coefficients between NC and CC models 

become outstanding due to the different combination of coupled quadratic/cubic-based 

coefficients governing various resonant/non-resonant modes (see Table I.3 and Section I.5.4). As 

a consequence, greater differences may occur. It is also important to remark that the kinematic 

condensation plays a more pronounced role when considering a larger-sagged or higher-

extensible resonant cable [1]. 

 In Figure 2, we show the negligible difference in the ϕm modal shape functions of the NC and 

CC models through the normalized vertical configurations (vn) of the symmetric 2
nd

 (r = 2) and 

5
th

 (s = 5) modes of the cables with λ/π ≈ 2.95 (Figures 2a, 2b) and 5.48 (Figures 2c, 2d). Solid 

(dotted) lines represent NC (CC) results. It is worth noting that, in spite of the apparent opposite 

phase occurring in ϕr between the two models for λ/π ≈ 5.48 (Figure 2c), there is no sign 

difference in the associated ℜ  values in Table 1. This is because the r-mode enters Equations (2) 

and (3) in couple, so that they are independent of the relevant phase change. In contrast, if the 

phases of the solely-appearing s-mode of the two models are opposite to each other, a sign 

difference is expected, which, in turn, could affect the resonant NNMs (Equations I.41-I.45) for 

given system parameters. Yet, such opposite phase does not affect the sign of second-order 

quadratic coefficients as the latter, embedded in Equations (I.33)-(I.35), appear in couple.  

 As the sag d increases (from .04 to .06) when increasing λ/π (from 2.95 to 5.48), the ℜ 

value notably increases, despite the associated σ value of frequency detuning (≈ ωs-2ωr) also 

increases from 0 to .07. In view of Equations (2) and (3), this augmented interaction is due, on 

one side, to the increasing sag effect, which is a direct consequence of the decreased H value 

(and ensuing increased α  value) to attain a greater λ/π; on the other side, to the relative changes 

in the associated static and linear dynamic, mostly vertical, (r, s) shape functions (see Figure 2). 

In addition, a sign difference in ℜ  between the two cables is noticeable.  
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 Section I.5.3 has shown how the non-linear planar responses of the approximate NC model 

with ρ ≈ 1 exhibit greater numerical errors, with respect to the exact model, than those of the 

corresponding NC model with ρ ≠ 1. Moreover, Table 1 exhibits different ℜ  values of various 

NC or CC models, whose differences become much stronger at second order (see, e.g., Table 

I.3). Accordingly, in order to achieve the most reliable analytical results, the following 

parametric studies, which are based on the second-order MMS, will rely upon the NC model, 

with the pertinent non-linear coefficients accounting for the contribution of longitudinal 

dynamics (no strain condensation) and ρ ≠ 1,. In turn, some results based on ρ ≈ 1 of the NC 

model are reported in [7, 8].  

 

2.2 Inclined Cables 

 Consider now inclined cables with the general NC model. The 2:1 resonance activation, with 

0ℜ ≠ , is nearly always possible in the frequency spectrum (Figure 1b), due to vanishing of the 

purely symmetric or anti-symmetric spatial character of one of the two (or both) involved modes 

as a consequence of the asymmetry effects due to inclined sagged configurations. In other words, 

the non-linear orthogonality properties of normal modes never hold. As an example, the 2:1 

resonance involving the high-frequency (asymmetric or hybrid) third (I3) or fourth (I4) mode 

and the low-frequency first (I1) mode may be activated near second avoidance (λ/π ≈ 4), besides 

those of non-avoidance cables having the same λ/π as non-crossover cables (1.28, 2.95, 3.23, 

5.48). This is shown in Figures 3a and 3b by the variation versus λ/π of the ℜparameters and 

of the frequency-tuning σ  effects, respectively, for the cable with θ = 30
o
 and N = 15. 

 Inspecting Figure 3, it is found that no perfect tuning (σ = 0) occurs for the I4-I1 interaction 

(i.e., σ > 0), whereas it occurs near avoidance (λ/π ≈ 4.1) for the I3-I1 interaction. All resonant 

interactions are activated asℜ≠ 0, being relatively high as λ/π approaches avoidance. However, 

when varying λ/π farther from avoidance, either to the left (λ/π < 4) for the I3-I1 interaction or 

to the right (λ/π > 4) for the I4-I1 interaction, the 2:1 resonances may no longer be activated, 
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despite the non-vanishingℜ. Indeed, being σ significantly different from zero, the frequencies 

may be far away from proper tuning, consider, e.g., the high values of bothℜ ≈ 7729 (7360) 

and σ  ≈ .5 (-.5) at λ/π ≈ 4.16 (3.73) for the I4-I1 (I3-I1) interaction. This implies that ℜ ≠ 0 is a 

necessary, but not sufficient, condition for such internal resonance to be activated, and that the σ  

value has also to be accounted for. Regardless of the latter, it is worth noting that the two I3-I1 

and I4-I1 interactions involving the same I1 mode yield almost equal values ofℜ(≈ 5964.018 

and 5967.215) at λ/π ≈ 4.019, thus showing the negligible effect of the difference in hybrid 

shape functions associated with the two coexisting avoidance modes (I3, I4) on theℜvalue. 

However, this effect increases as λ/π  is far away from avoidance.          

 In contrast with near-avoidance cables, theℜvalues of the I3-I1, I4-I1 interactions 

progressively decrease � due to decreasing level of �modal hybridity� � as λ/π moves towards 

the right (λ/π → ∞ ) or left (λ/π 2→ ) of second avoidance, respectively, which ultimately 

reflects the occurrence of a nearly anti-symmetric high-frequency mode.  

 Overall, the outcomes of the nearly tuned 2:1 resonance activated at second avoidance, 

irrespective of the involved high-frequency, hybrid, 3
rd

 or 4
th

 mode, theoretically confirm the 

numerical results in [9], and enlighten on the distinguishing dynamic behaviors of the second-

avoidance cable with respect to those of the second-crossover cable, whose 2:1 resonance is 

activated only when the high-frequency mode, out of the two coexisting modes, is symmetric [5]. 

As a general remark, the present analysis gives broad hints about the most likely involvement of 

a larger number of modes within a multiple internal resonance for avoidance than for crossover 

cables [e.g., 10, 11], owing to the non-satisfied non-linear orthogonality of the relevant modes.   

 Some resonant non-avoidance (λ/π ≈ 1.28, 2.95, 3.23, 5.48) and near-avoidance (λ/π ≈ 3.84, 

4.14) inclined cables are given in Table 2, with their properties (θ, d, α, ωr, ωs) and ℜ values (N 

= 30). The varying θ effects (θ = 30
o
, 45

o
, 60

o
) on the resonance activation are also highlighted 

for λ/π ≈ 2.95. It is seen that, in comparison with theℜvalues in Table 1 for the corresponding 
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non-crossover cables, those of all non-avoidance cables (θ = 30
o
) decrease, even though both the 

sag d and α  parameters substantially increase. This is likely due to the role played by the 

inclination θ, which, in fact, significantly alters the relative importance of the longitudinal and 

vertical shape functions affecting the ℜ value. Accordingly, this further decreases as θ  becomes 

45
o
 and 60

o
 for λ/π ≈ 2.95, consistent with the increasing (absolute) value of σ ( ≈ -.02, -.10,       

-.24) as θ = 30
o
, 45

o
, 60

o
, respectively, which shifts the system dynamics far away from nearly-

perfect tuning. Indeed, as displayed in Figure 4, though involving the same resonant modes (r = 

2, s = 5) for all θ, the (normalized) un plays an increasing role with respect to the corresponding 

vn in both the low- (4a, 4c) and high-frequency (4b, 4d) modes as θ  increases, up to becoming 

the most significant component. This shows how the cable inclination plays a role in linear 

dynamics not only as regards the occurrence of asymmetric modes at avoidance, and generally 

affects the non-linear dynamics up to giving the smallest ℜ value for the maximum θ (60
o
).  

 

3. Resonant/Non-Resonant Quadratic Modal Contributions  

 Apart from the first-order quadratic coefficient ℜ governing resonance activation, the 

second-order MMS solution of the coupled amplitudes and frequencies also depend on the 

second-order coefficients Krr, Kss, and Krs (Equations (I.33)-(I.35)), which account for the 

combined effects of quadratic/cubic contributions due to the two resonant (modeled) modes, and 

for the solely quadratic contributions due to the non-resonant (non-modeled) modes. Thus, prior 

to evaluating the non-linear dynamic displacement and tension profiles, which are amplitude- 

and frequency-dependent, it is deemed necessary to examine the quadratic modal contributions 

responsible for solution convergence. Accordingly, the pertinent percent contributions to each of 

the quadratic coefficients (labeled Q

iiΚ , i = r, s) are evaluated by considering a finite-dimensional 

model through which M is the highest order of retained modes.  

 The modal contributions for the low- and higher-sagged cables with λ/π  ≈ 1.28 (r = 1, s = 3, 

M = 5) and 5.48 (r = 2, s = 5, M = 15) are considered in Table 3 and 4, respectively, to highlight 
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the cable sag effects. In each λ/π case, the results for θ = 0
o
 (Table 1) and 30

o
 (Table 2) are 

comparatively reported to show the influence of cable inclination. It can be seen that only the 

non-resonant symmetric modes contribute to all coefficients for horizontal (non-crossover) 

cables [5, 12], whereas all non-resonant modes � regardless of their order or spatial character � 

come into play for inclined cables. This distinctive aspect also holds for the second-order spatial 

functions of dynamic displacement and velocity (Equations (I.51)-(I.52)). For the cables with 

λ/π  ≈ 1.28, the quadratic effects due to non-resonant modes, which, in general, can be either 

positive (softening-type correction) or negative (hardening-type correction), are very small 

compared with those produced by the two resonant modes (> 99 %). Therefore, for these cables, 

it makes sense to consider a two-degree-of-freedom reduced-order model accounting for only 

the two resonant modes. However, this is not the case for the larger-sagged cables with λ/π  ≈ 

5.48, for which the higher-order effects of quadratic nonlinearities become pronounced. As 

shown in Table 4, a number of non-resonant modes, e.g., the intermediate-order 4
th

 (3
rd

 and 4
th

) 

and the higher-order 7
th

, 9
th

, 11
th

 (6
th

, 7
th

, 9
th

 and 11
th

) modes play a meaningful role, too, in all 

quadratic coefficients of the horizontal (inclined) cable.  

 In other cases, some non-resonant modes are seen to play a role even greater than the 

resonant ones. This may happen, for instance, when the associated λ/π values fall in the 

avoidance zones (Figure 1b), where multiple internal resonances are realized. Consider, e.g., the 

resonant inclined (θ=30
o
) cable in Table 2 involving the coupled 1

st
 and 4

th
 modes or the coupled 

1
st
 and 3

rd
 modes, whose λ/π  is nearly below (λ/π ≈ 3.84) or above (λ/π ≈ 4.14) second 

avoidance, respectively. As shown in Table 5 with M = 15, the combinations (103.514 %, 94.865 

%) of non-resonant modal contributions in the Q

rrΚ  are greater than those (-3.514 %, 5.135 %) of 

resonant modal contributions for both λ/π  (3.84, 4.14), whereas, in the Q

rsΚ , the former may be 

greater than (65.832 %) or nearly equal to (44.038 %) the latter (34.168 % or 55.962 %) for 

λ/π  ≈ 3.84 or 4.14, respectively. As a matter of fact, the major influence substantially results 
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from the contribution of the 3
rd

 (4
th

) hybrid mode which nearly coexists with the 4
th

 (3
rd

) one 

near avoidance at λ/π ≈ 3.84 (λ/π  ≈ 4.14). Yet, other non-resonant modes, e.g., the intermediate-

order 2
nd

 and the higher-order 5
th

 modes also play a significant role for both λ/π, like those in 

Table 4 for cables with λ/π  ≈ 5.48.  

 In conjunction with Equations (I.33)-(I.35), these meaningful contributions are due to the 

associated nearly-vanishing denominators where the difference between squared resonant and 

non-resonant frequencies appears, as well as to the coupled quadratic terms whose values are 

non-trivially affected by the asymmetric spatial character of the coexisting hybrid modes. The 

former are responsible for a multiple resonance condition of near-avoidance cables. Overall, the 

quadratic modal contributions put into evidence the significance of accounting for both resonant 

and non-resonant (higher-order) modes in the resonant dynamic solution of cables exhibiting 

significant sag and/or remarkable asymmetry due to inclination effects. Of course, the higher-

order modal contributions become less important when increasing the order of modal truncation 

up to finally yielding converging results. It is also worth noticing how the resonant two-mode 

solution, when embedded in an infinite-dimensional Galerkin expansion, is capable of properly 

signaling the breakdown of the lowest reduced-order modeling. Thus, accounting for also non-

resonant modes becomes mandatory.   

 

4. Resonant Non-linear Amplitudes and Frequencies 

 The second-order effects on resonant non-linear amplitudes are now investigated, aimed at 

verifying the solution convergence based on the quadratic modal contributions previously 

discussed. Equation (I.41) is employed by evaluating the low-frequency ar amplitude for given 

high-frequency as amplitude. Two horizontal non-crossover cables involving different resonant 

symmetric modes (λ/π  ≈ 1.28 and 2.95) are first considered. Then, to illustrate the asymmetry 

effects due to the hybrid modes, an inclined near-avoidance cable (θ = 30
o
, λ/π  ≈ 4.14) is 

analyzed. The as-ar relationships obtained with first-order and M-varying second-order solutions 
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are comparatively displayed in Figures 5a, 5b and 5c for λ/π ≈ 1.28 (r = 1, s = 3), λ/π ≈ 2.95 (r = 

2, s = 5) and λ/π ≈ 4.14 (r = 1, s = 3), respectively. For the sake of comparison, fixed σ = 0 and γ 

= π values are considered, and only stable positive amplitudes according to Equation (I.42) are 

presented. 

 Figures 5a and 5b highlight that considering only the first-order term gives considerably 

overestimated ar versus as values with respect to those obtained by second-order solutions. For 

the low-sagged cable (λ/π ≈ 1.28), the second-order amplitude curves, obtained with M = R 

(accounting for only the two resonant modes), M = 3 (confirming the no-contribution of the anti-

symmetric 2
nd

 mode) or M = 5 in Figure 5a, are nearly undistinguishable from each other. Thus, 

it is definitely reasonable to consider only the minimal (2-DOF) reduced-order resonant model 

for this cable, because the quadratic effects due to non-resonant modes are negligible. However, 

as the cable sag increases (Figure 5b, λ/π ≈ 2.95), considering only the resonant modes (M = R) 

in the second-order solution entails underestimated ar values which, in addition, are limited to a 

low amplitude as range, due to the rapidly approaching negative value of the resulting term in the 

bracket of Equation (I.41). The solutions improve and converge at once when considering M = 5. 

This means that, since there is no contribution from the anti-symmetric 1
st
 and 4

th
 modes (see 

Figure 1a), accounting for only the intermediate symmetric 3
rd

 mode is already satisfactory. Of 

course, in other λ/π ≈ 2.95 cases with θ ≠0, the 1
st
 and 4

th
 modal contributions are non-trivial. 

Depending on the symmetric modal interaction, it is also observed that the obtained ar 

amplitudes decrease as the sag or λ/π  increases for the fixed θ and given as amplitudes.  

 Unlike horizontal cables, the asymmetry effects play a significant role for the near-avoidance 

cable shown in Figure 5c. The first-order and M = R second-order solutions yield almost the 

same ar values, which remain unchanged even if accounting for also the 2
nd

 mode (M = 3). When 

taking the 4
th

 mode � namely, the hybrid non-modeled mode coexisting at second avoidance � 

into consideration (M = 4), the ar values considerably increase over the larger as amplitude 
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range. Eventually, the results converge when M = 5, confirming the need to consider also some 

non-resonant higher-order modes in Table 5. 

 The effects of varying θ on both the ar-as relationship and the backbone curve are now 

displayed in Figures 6a and 6b, respectively. Since ωs
(N) ≈ 2ωr

(N)
 [1], only the r-mode non-linear 

frequency (ωr
(N)

) is evaluated through Equation (I.45) and then normalized with respect to the 

associated linear frequency ωr. With λ/π  ≈ 2.95, the second-order results are shown for the 

horizontal and inclined (θ = 30
o
, 45

o
 60

o
) cables with M = 5 and 10, respectively. In view of 

Figure 6a, the estimated ar amplitudes increase as θ (as well as the cable sag) increases for given 

as values, contrary to the case exhibiting the increased sag effects alone (Figures 5b vs 5a). This 

may be due to exchanged importance of the u/v shape functions (Figure 4) as θ increases, 

according to which the u component becomes the dominant contribution to cable response and 

gives rise to significant changes in the associated non-linear coefficients (ℜ , Krr, Kss, Krs). As 

shown in Table 6, the inclination affects both the second-order quadratic ( Q

iiΚ ) and cubic ( C

iiΚ ) 

coefficients, which are of softening-type and hardening-type, respectively. As θ increases, all of 

the absolute summations (∑) of quadratic and cubic coefficients decrease, without changing the 

sign indicating the effective nonlinearity. Evidently, together with the ℜ decrement in Table 2, 

this entails an overall increment of the estimated ar values through Equation (I.41), while 

keeping σ and γ  fixed. Thus, while the backbone curves in Figure 6b exhibit, in general, a 

hardening behaviour, they become as less hardening as higher θ is. This occurs because, as θ 

increases, the softening correction due to the ar-dependent term in Equation (I.45) somehow 

reduces the prevailing hardening corrections due to the first-order (remind that ℜ  is positive, 

while cosγ is negative) and as�dependent terms. This augmented softening behaviour appears 

consistent with the effects of the solely increased sag in non-resonant horizontal cables [3]. 

 The effects of varying the cable extensibility EA/wCXH on the resonant amplitudes and r-

mode backbone curve are illustrated in Figures 7a and 7b, respectively, by focusing on 
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horizontal cables with λ/π ≈ 2.95 (N = 30, M = 5). While keeping A, wC and XH fixed, the E value 

(extensibility) is increased (decreased) such that EA/wCXH ≈ 10000, 20000 with respect to the 

reference one (2580.35). Meanwhile, in order to maintain λ/π ≈ 2.95 in Figure 1a, the H and Ta 

(sag) values increase (decreases) as E increases. The assumption of small static strain [1] is still 

satisfied, and the second-order contributions from the non-resonant 3
rd

 mode remain significant. 

In addition, the absolute values of first-order � as well as second-order (ℜ  and Krr remain 

positive, while Kss and Krs remain negative) � coefficients decrease as EA/wCXH decreases, even 

though the sag increases. Because of the slight changes in the modal shape functions of low-

extensible cables, this decrement is mainly due to the decrement of the pertinent 

α  (=ΕΑ/Η) parameter, despite H also decreases. Similar to the increasing θ case, the estimated 

ar values increase as the extensibility increases for given as, as shown in Figure 7a. This is a 

physically expected behaviour because a lower-extensible (e.g., metallic) cable vibrates with 

smaller amplitudes than a corresponding higher-extensible (e.g., synthetic) cable. Accordingly, 

the backbone curve in Figure 7b exhibits as more hardening behaviour as lower the extensibility 

is: this is again expected as the metallic cable is typically stiffer than the synthetic cable. The 

σ  and γ  parameter effects on the amplitude/frequency results can be found in [7].  

 

5. Resonant NNMs and Their Space-Time Evolution 

 The second-order effects on the spatial dynamic configurations of the 2:1 resonant NNMs are 

now illustrated. Three different cables are analyzed in Figures 8a, 8b and 8c, respectively, i.e. the 

horizontal cable with λ/π ≈ 2.95 and as = .0002 (Table 1), and the inclined (θ = 30
o
) cables 

(Table 2) far away from avoidances (λ/π ≈ 5.48, as = .0015) or near second avoidance (λ/π ≈ 

4.14, as = .0003). To gain clear insights into different MMS solutions, the first-order, improved 

first-order and second-order dynamic configurations (see their definitions in Section I.4.3) of the 

v amplitudes (with 51 cable nodes) are comparatively presented with γ = π, σ = βr0 = t = 0, the 

latter value corresponding to zero-velocity configurations, see Equation (I.44). 
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 Overall, it can be seen that significant quantitative (Figures 8a-8c) as well as qualitative (8b 

and 8c) errors occur when considering the first-order configurations, due to the overestimated (or 

underestimated) ar amplitudes at first order, e.g., in Figures 5a and 5b (or 5c). Thus, it is very 

important to account for second-order corrections � depending on the non-resonant modes � in 

both the amplitudes and frequencies. In Figure 8a, quantitative errors are seen to occur also if 

considering M = R in the second-order displacement. The results suggest taking the symmetric 

3
rd

 mode (M = 5) into account, consistent with the observation in Figure 5b, the 7
th

 mode (M = 7) 

being instead useless. Yet, it is worth noticing how only a small difference occurs between the 

improved first-order and the second-order configurations with M = 5, which fully highlights the 

major importance of accounting for higher-order effects in the amplitude and frequency even in a 

first-order displacement solution, in order to achieve a reliable NNM. This spatial convergence 

property also holds when varying the time t.  

 In contrast, the importance of accounting for the full second-order analysis (involving also 

spatial corrections) is apparent in Figures 8b and 8c which refer to the larger-sagged and inclined 

cables, whose asymmetric features of all superimposed configurations are clearly noticed with 

respect to the symmetric horizontal cable in Figure 8a. In agreement with Tables 4 and 5, the 

spatial configurations converge satisfactorily when considering the second-order displacement 

solution accounting for both resonant/non-resonant modes (e.g., M ≈ 7 in Figure 8b and M ≈ 5 in 

Figure 8c), whereas the improved first-order solution does not converge albeit considering more 

modes (M = 15 in Figure 8b and M = 11 in Figure 8c). This makes evident that the second-order 

quadratic nonlinearities are significant for larger-sagged and asymmetric cables, and gives clear 

hints about the necessity of accounting for also second-order spatial displacement corrections. 

 Overall, depending on coupled vibration amplitudes, it can be inferred that, in order to obtain 

reliable reduced-order MMS solutions of the resonant NNMs: (i) Accounting for contributions of 

non-resonant (higher-order) modes is very important, unless a very low-sagged cable is 

considered; (ii) it may be sufficient to account for them in the non-linear amplitude and 
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frequency solutions only, thereby developing an improved first-order displacement solution, for 

relatively low-sagged cables; (iii) it is necessary to take them into consideration also in the non-

linear dynamic displacements (the second-order spatial solution) as the cable sag or inclination 

effects are significant.  

 The space-time evolution of the second-order displacements of resonant NNMs is addressed 

by referring to both the u (dashed lines) and v (solid lines) components in the analysis over a half 

non-dimensional r-mode period Tr of non-linear oscillation. They are shown in Figures 9a, 9b 

and 9c, with M = 5, 10 and 15, respectively, for the horizontal and inclined (θ = 45
o
) cables with 

λ/π ≈ 2.95, as = .0004, and for the inclined (θ = 30
o
) cable with λ/π ≈ 5.48, as = .001. Having in 

mind the u and v modal shapes of the underlying 2
nd

 and 5
th

 resonant modes for the horizontal 

and inclined (θ = 45
o
) cables in Figure 4, an apparently distinctive time-varying non-linear 

superposition of the two coupled modes is observable in Figures 9a and 9b. Qualitatively, as θ 

increases, the longitudinal amplitudes � which are quite small for the horizontal cable � 

meaningfully increase, up to becoming comparable with the combined vertical ones, which, in 

turn, are relatively lower than in the horizontal cable. This visualizes how the longitudinal 

displacements play an increasingly important role in the non-linear resonant dynamics as θ 

increases for a fixed λ/π, and represents a closed-form confirmation of a behavior already 

exemplified in [9] within a purely numerical solution. Furthermore, a remarkably different time 

evolution is observed between the symmetric/asymmetric spatial distributions exhibited by the 

horizontal/inclined cables, respectively.  

 With a higher number of retained modes and greater amplitudes, the coupled configurations 

of the inclined cable are likely to exhibit multi-harmonic responses, as shown in Figure 9c whose 

vertical scales are enlarged with respect to Figures 9a and 9b. This is revealed by the small time-

varying local curvatures (e.g., at t = .1Tr, .4Tr, .5Tr) due to spatial corrections from higher-order 

non-resonant modes. The multi-harmonic feature has already been observed through numerical 

simulations in the vibrations of large-sagged horizontal cables [5]. 
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6. Space-Time Modification of Cable Non-Linear Tensions  

 On accounting for the spatial variation of both static e and non-linear dynamic ed strains, the 

space-time modification of cable total tension can be evaluated through Equation (I.5) with 

neglected out-of-plane component, wherein the derivatives of the converging second-order u and 

v displacements are calculated through Equation (I.43). Tf is the non-linear total tension non-

dimensionalized with respect to the maximum static tension, which typically takes place at the 

left support (both supports) for the inclined (horizontal) cable (Figure I.1). Two interesting 

aspects are emphasized: (i) the inclination effects on the spatial distribution of Tf  response 

shown in Figure 10a (for cables with λ/π ≈ 2.95, as = .0004 and t = .3Tr); (ii) the space-time Tf 

distribution exhibiting the strain variation effects shown in Figure 10b (for the inclined cable 

with θ = 30
o
, λ/π ≈ 5.48, as = .001, t = 0-.5Tr). Again, the prescribed values γ = π, σ = βr0 = 0 are 

assigned in all cases.  

 Figure 10a clearly shows that, while the spatially symmetric Tf response of the horizontal 

cable exhibits a limited variation along the cable span-length, the spatially unsymmetrical Tf 

responses of all inclined cables (see also Figure 9b for θ = 45
o
) markedly diminish (non-linearly) 

as one moves towards the right support or as θ increases. This entails a meaningful difference 

between the maximum/minimum total tensions, which increases with θ [9], and implies that, 

during non-linear vibrations, the resulting total tension at any cable point is smaller than the 

initial maximum static tension due to a negative oscillation-induced tension. Accordingly, the 

non-linearity produces a less-hardening behavior of higher-inclined cables, as already observed 

in Figure 6b. From the engineering viewpoint, special care has to be paid to the possibility of 

cable loosening [13] at the lower-right end support as θ increases (see, e.g., Figure 10a, θ = 60
o
), 

this being one major design aspect. Yet, also the maximum Tf taking place at the left-end support 

for all θ must be properly considered by looking at the relevant time history. As an example, this 

is reported in Figure 11 for the horizontal cable in Figure 9a, along with the Tf time histories at 

other positions, i.e., at 1/8, 1/4 and middle span. It is seen that all periodic Tf responses become 
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considerably greater or smaller than their initial estimated values, with the left-support tension 

still exhibiting the maximum value, whereas the mid-span tension exhibiting the minimum one. 

Consequently, the time-varying difference between maximum/minimum tensions becomes 

appreciable at a specific time, highlighting that the usual strain condensation model assuming 

spatially-uniform dynamic tension is no more suitable for such small-sagged cable exhibiting 

internal resonance. 

 In Figure 10b, the overall space-time variability of tension response becomes even more 

apparent for the inclined and larger-sagged cable, where the spatially non-uniform and non-

symmetric features are seen to entail the occurrence of the largest or smallest values of total 

tension along time evolution, also at cable positions other than the supports: see, e.g., the 

distributed tension peaks occurring at t = 0 or .5Tr, and their associated configurations in Figure 

9c. All of these results confirm the advantage of making use of the non-condensed model which 

properly accounts for the spatial variability of non-linear dynamic strain, in order to ascertain the 

actual extreme values of total tension response. 

 

7. Modal Interaction Features: Numerical Validation of Analytical Predictions 

 The analytical MMS predictions are now validated by numerical results. Instead of 

integrating the system ODEs (I.17) with a prescribed number of modes, the space-time finite 

difference method (FDM), coupled with a predictor-corrector iteration [5, 7], is directly applied 

to the original PDEs (I.53-I.54) neglecting the out-of-plane component, to determine the actual 

dynamic responses under specified initial conditions. To this end, the responses are initiated by 

the associated coupled displacements (Equation I.43) and velocities (Equation I.44). In the 

following, the non-dimensionalized responses are plotted against the time parameter T obtained 

by non-dimensionalizing the physical time with respect to the r-mode natural period.  

 In the spatial convergence background of different MMS solutions reported in Figure 8a for 

the horizontal cable with λ/π ≈ 2.95 and t = 0, the numerical v responses at 1/8 span (node 6), 
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obtained with the u, v initial displacement conditions of first-order, improved first-order and 

second-order configurations are comparatively illustrated in Figure 12. Depending on the 

obtained ar amplitudes for the specified as = .0002 (Figure 5b), it can be seen that all responses 

show the periodically-modulated interaction features due to the 2:1 resonance, but some of them 

differ in both the extent and duration of the modulation, see the first-order (Figure 12a), 

improved first-order with M = 5 (Figure 12b) and second-order with M = R (Figure 12c) time 

histories. Yet, the modulation feature in the response initiated by the improved first-order 

solution (Figure 12b) is practically similar to those in the responses initiated by the second-order 

solutions with M = 5 (solid lines) or 10 (circles) in Figure 12d. This highlights, with regard to the 

temporal aspect, both the possibility of considering just the improved first-order solution and the 

convergence properties of the second-order spatial solution, already observed in the analytical 

framework. This holds also for the corresponding inclined cable which exhibits equally 

comparable FDM time laws as the present horizontal cable [8]. Of course, the amplitude 

modulations characterizing the actual resonant interaction in Figure 12 initiated by the coupled-

mode displacements are substantially different from those initiated by the single-mode ones in 

Figure I.7. On the other hand, they do not occur in the periodic time laws corresponding to the 

stationary amplitude MMS solutions.   

 Moving to various inclined cables with λ/π ≈ 2.95 and larger as = .0004 (corresponding to 

Figure 6), meaningful differences in terms of extent and duration of resonant modal interactions 

are noticeable in the u (solid lines) and v (dashed lines) responses at 1/8 span shown in Figure 

13, which are initiated with the second-order u and v displacements at t = 0. With respect to 

Figure 12d for the horizontal cable with as = .0002 and ar ≈ .00023 (Figure 6a), the horizontal 

cable response in Figure 13a has a longer modulation due to the relatively different contribution 

of the lower ar ≈ .00018: this reflects the amplitude-dependence of system resonant dynamics 

into the time law. Apart from the considerable increment (decrement) in the u (v) response � as 

well as in the ar amplitudes in Figure 6a � as θ  increases, the maximum inclined cable with θ = 
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60
o
 (Figure 13d) exhibits the shortest modulation. This highlights the inclination effects on the 

non-linear temporal features of the original system. The Fourier amplitude spectral densities 

(PSDs) of the v responses in Figure 13 are also reported in Figure 14, all of them clearly 

revealing two major frequencies. This property and the observed beating-type energy transfer 

due to modal interaction confirm the theoretical prediction about activation of the planar 2:1 

resonance involving just the modeled 2
nd

 and 5
th

 modes of non-crossover/non-avoidance cables.     

 With the second-order MMS initial displacement conditions at t = 0, the numerical FDM v 

responses (at node 6) showing the effects of varying the given as amplitude, or the angle θ, or the 

extensibility E on the response of cables with λ/π ≈ 2.95 are summarized in Figures 15a-15c, 

respectively, also to the aim of validating the non-linear behaviors predicted by the MMS 

solution. For a fixed θ, i.e. for the horizontal cable, Figure 15a shows that (i) the system 

responses are as more hardening as greater as is, in agreement with Figure 6. In turn, when 

varying the angle θ  for a fixed as =.0004, (ii) the responses in Figure 15b reflect the less-

hardening non-linearity as θ  increases, again in agreement with Figure 6. Moreover, when 

varying the extensibility for fixed θ = 0
o 

and as =.0002 values, (iii) the response in Figure 15c is 

seen to be as more hardening as higher the parameter EA/WCXH is, in agreement with Figure 7. 

Hence, overall analytical predictions are validated by numerical FDM results. 

 Next, it is interesting to evaluate how the non-linear resonant response evolves when 

initiating both the spatial displacement and velocity fields of second-order MMS solution, with 

respect to that initiated by zero-velocity (t = 0) displacements. For this purpose, two initial u, v 

conditions are considered: one corresponding to the MMS displacements at t = 0; the other 

corresponding to the MMS displacements/velocities at t = .3Tr. The associated FDM u responses 

at various positions, including nodes 6 (solid lines), 12 (open circles), 26 (dashed lines) and 42 

(dotted lines), are comparatively shown in Figures 16a and 16b, respectively, for the inclined 

cable with θ = 60
o
, λ/π ≈ 2.95 and as = .00026. Obviously, though initiated with different 

amplitudes, phases and velocities, the response at each position exhibits the same qualitative 
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behavior in both figures regarding the extent and duration of the resonantly periodic modulation, 

which, indeed, holds true also for other inclined cables. Thus, the characterizing amplitude-

modulated response of the original system is shown to be invariant with respect to the stationary 

MMS displacements and/or velocities entering the initial conditions. In addition, the numerical 

results confirm that, apart from the distinctive extent of modulation, the duration of modal 

interaction is the same at different cable positions. 

 Finally, the amplitude modulation features of the non-dimensional FDM-based displacement 

and velocity are illustrated through the phase portraits in Figures 17a (1/8 span), 17b (1/4 span) 

and 17c (mid-span) against the corresponding stationary MMS-based portraits in Figures 17d, 

17e and 17f, respectively, for the horizontal cable with λ/π ≈ 2.95 and as = .0002 under initial 

conditions of the second-order MMS at t = .3Tr. Besides confirming the different extent of 

amplitude modulation occurring at different cable positions, the overall similarity between non-

stationary (FDM) and stationary (MMS) phase portraits is highlighted, with the mid-span 

response exhibiting the largest portrait and modulation.  

 

8. Summary and Conclusions 

 Based on the kinematically non-condensed cable model accounting for the effects of both 

non-linear dynamic extensibility and system asymmetry due to inclined sagged configurations, 

planar 2:1 resonant multi-modal non-linear free vibrations of horizontal/inclined cables have 

been investigated through the second-order multiple scales solution obtained in Part I [1]. The 

main features of the parametric analysis are summarized as follows.  

 (i) Internal resonance activation has been discussed through the interaction coefficients, 

distinguishing the dynamic characteristics of horizontal/inclined cables as regards the non-linear 

orthogonality properties of normal modes. For horizontal cables, the internal resonance is always 

activated when the involved high-frequency mode is symmetric, whereas, owing to the 

asymmetry effects of inclined configurations entailing modal hybridity, the resonance activation 
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in inclined cables is nearly always possible � depending on frequency-tuning and hybridity 

capacity � and occurs over a wide range of system parameters.   

 (ii) Based on a multi-dimensional Galerkin discretization, analysis of second-order quadratic 

modal contributions has shown that, besides the two resonant modes, only symmetric non-

resonant modes affect the solution of (non-crossover) horizontal cables, whereas all non-

resonant modes � irrespective of their order or spatial character � do contribute for inclined 

cables. Moreover, some non-resonant modes may play a role even greater than the resonant ones. 

This occurs, for instance, in the avoidance zone of the frequency spectrum wherein, due to the 

system high modal density and strong coupling, the non-modeled hybrid mode � out of the two 

coexisting at avoidance � contributes to the response greater than the directly-modeled hybrid 

mode. This highlights the necessity of accounting for both of them and the possible involvement 

of a larger number of coupled modes in avoidance cables than in crossover cables.  

(iii) As regards the reduced-order modeling issue, the convergence studies accounting for 

higher-order effects of quadratic nonlinearities on non-linear amplitudes, frequencies and 

dynamic configurations of the resonant NNMs have indicated that, depending on the system 

parameters and coupled amplitudes, the contributions of non-resonant (higher-order) modes are 

very important. The minimal (two-degree-of-freedom) model involving only the resonant modes 

shows capable of providing reliable results only for a very low-sagged cable. In turn, it may be 

sufficient to account for non-resonant modes in the non-linear amplitudes and frequencies only, 

thereby developing an improved first-order solution, for relatively low-sagged cables; otherwise, 

they should be accounted for also in the dynamic displacements (the full second-order solution) 

as the cable sag and/or inclination (asymmetry) becomes significant. 

 (iv) A qualitative difference in the symmetric/asymmetric spatial distribution of the time-

varying superimposition of the two resonant modes between horizontal/inclined cables has been 

highlighted, showing also the meaningful role of longitudinal displacement dynamics as cable 
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inclination increases, and the multi-harmonic response features owed to higher-order non-

resonant modes for inclined sagged cables.  

 (v) The spatio-temporal variability of non-linear dynamic tension has been presented, 

emphasizing the importance of accounting for spatial variation of cable non-linear strain through 

the non-condensed model since appreciable time-varying differences between 

maximum/minimum total tensions occur even in shallow horizontal cables.    

 Overall, significant effects of cable sag, inclination, extensibility as well as longitudinal 

displacements on the non-linear resonant dynamics have been evidenced. Moreover, finite 

difference displacement time laws obtained from the original partial-differential equations of 

motion have confirmed the predictions and the amplitude-dependent properties of the multiple 

scales solution, by also showing periodically modulated interaction features. 

 Apart from making available the approximate general non-condensed model valid for 

horizontal/inclined sagged cables, and for showing its thorough accuracy with respect to the 

exact model in Part I [1], the comprehensive analysis of resonant non-linear normal modes has 

provided worthwhile information as regards deriving accurate reduced-order cable models and 

qualifying the non-linear dynamic properties of horizontal/inclined cables to be properly 

recognized within an upcoming forced vibration analysis.    
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Table 1 

 

r-s ℜ  
NC λ/π α d Order 

(Mode*) 
rω  sω  

ρ ≠1 ρ ≈1 
CC 

1.28 475.7 .023 1(S)-3(S) 4.76 9.51 465.733 453.730 448.991

1(A)-4(A) 6.26 12.55 0 0 0
2 640.6 .031 

2(S)-4(A) 6.28 12.55 0 0 0

2.95 828.2 .040 2(S)-5(S) 7.91 15.82 1210.677 1419.739 1432.430

3.23 878.1 .043 3(S)-7(S) 10.94 22.03 3071.039 3092.333 3189.458

1(A)-3(S) 6.22 12.48 -12265.279 -12534.834 -12851.058
4 1013.5 .049 

1(A)-4(A) 6.22 12.54 0 0 0

5.48 1246.7 .060 2(S)-5(S) 8.82 17.57 -31316.003 -31928.934 -31744.898
    * S (A): symmetric (anti-symmetric) 
 

 

 

 

 

 

 

 

 

Table 2 

 

λ π  θ α d r-s rω  sω  ℜ  

1.28 30
o
 548.6 .031 1-3 4.42 8.84 312.729 

30
o
 955.6 .053 7.36 14.70 959.154 

45
o
 1170.8 .080 6.70 13.30 494.389 2.95 

60
o
 1655.5 .161 

2-5 

2-5 

2-5 5.73 11.22 115.426 

3.23 30
o
 1014.3 .057 3-7 10.16 20.46 -2144.941 

3.84 30
o
 1137.5 .064 1-4 5.75 11.72 3231.275 

1-3 5.75 11.51 -4297.997 
4.14 30

o
 1195.7 .067 

1-4 5.75 11.97 7513.074 

5.48 30
o
 1439.0 .080 2-5 8.19 16.26 -21348.404 
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Table 3 

 

Modal contributions (%) 

θ = 0
o
 θ = 30

o
 m 

Q

rrΚ  Q

ssΚ Q

rsΚ Q

rrΚ Q

ssΚ Q

rsΚ  

1 (r) 98.476 74.014 76.771 98.559 73.776 76.794 

2 0 0 0 0.007 0.346 -0.047 

3 (s) 1.308 26.009 23.119 1.214 25.886 23.267 

4 0 0 0 0.012 0.015 -0.056 

M=5 0.216 -0.023 0.110 0.209 -0.023 0.042 

 

 

 

Table 4 

 

Modal contributions (%) 

θ = 0
o
 θ = 30

o
 m 

Q

rrΚ  Q

ssΚ Q

rsΚ Q

rrΚ Q

ssΚ Q

rsΚ  

1 0 0 0 0.328 0.337 -0.717 

2 (r) 35.134 2.131 -6.673 32.805 2.293 -8.105 

3 0 0 0 0.433 1.148 -2.091 

4 -3.345 15.818 -22.223 -3.229 11.446 -18.826 

5 (s) 56.672 81.280 137.184 51.519 84.329 138.869 

6 0 0 0 7.497 0.424 -1.536 

7 9.650 2.528 -10.053 8.806 1.972 -9.398 

8 0 0 0 0.110 0.062 -0.787 

9 1.268 0.033 1.850 1.144 0.028 2.517 

10 0 0 0 0.021 -0.033 0.044 

11 0.381 -2.042 -0.010 0.342 -2.343 0.067 

: : : : : : : 

M=15 0.080 0.067 -0.032 0.071 0.069 -0.021 

 
 

 

 

Table 5 

 

Modal contributions (%) 

λ/π  = 3.84
a
 λ/π  = 4.14

b
 m 

Q

rrΚ  Q

ssΚ Q

rsΚ Q

rrΚ Q

ssΚ Q

rsΚ  
a,b

1(r) -0.670 0.150 2.162 0.528 0.013 2.868 

2 -2.446 6.998 12.911 1.625 3.643 8.943 
b
3 (s) 110.895 25.124 45.217 4.607 86.348 53.094 

a
4 (s) -2.844 64.530 32.006 86.348 8.930 29.140 

5 -4.326 3.079 6.541 6.159 0.957 4.841 

6 -0.036 0.008 0.055 0.053 0.003 0.149 

7 -0.397 -0.293 0.752 0.482 -0.171 0.660 

8 -0.006 -0.256 0.009 0.007 0.016 0.005 

9 -0.102 0.483 0.208 0.116 0.185 0.179 

: : : : : : : 

M=15 -0.009 0.022 0.019 0.010 0.010 0.017 
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Table 6 

 

          (a) 

Krr 
θ Q

rrΚ C

rrΚ ∑ 

0
o
 3380245.348 -2443516.680 936728.668 

30
o
 1918638.007 -1405070.502 513567.505 

45
o
 891003.539 -705675.662 185327.877 

60
o
 241233.251 -230468.875 10764.376 

        (b) 

Kss 
θ Q

ssΚ C

ssΚ ∑ 

0
o
 43656384.761 -109638064.379 -65981679.618 

30
o
 24731628.708 -61808123.938 -37076495.229 

45
o
 11127469.293 -28054512.094 -16927042.801 

60
o
 2886187.962 -7461794.632 -4575606.670 

        (c) 

Krs 
θ Q

rsΚ C

rsΚ ∑ 

0
o
 10538434.283 -21960899.470 -11422465.188 

30
o
 5918207.453 -12468727.488 -6550520.035 

45
o
 2677493.735 -5945924.924 -3268431.189 

60
o
 698677.986 -1754799.169 -1056121.184 

 




