Picture of wind turbine against blue sky

Open Access research with a real impact...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs.

The Energy Systems Research Unit (ESRU) within Strathclyde's Department of Mechanical and Aerospace Engineering is producing Open Access research that can help society deploy and optimise renewable energy systems, such as wind turbine technology.

Explore wind turbine research in Strathprints

Explore all of Strathclyde's Open Access research content

Determination of acceptor distribution from fluorescence resonance energy transfer: theory and simulation

Rolinski, O.J. and Birch, D.J.S. (2000) Determination of acceptor distribution from fluorescence resonance energy transfer: theory and simulation. Journal of Chemical Physics, 112 (20). pp. 8923-8933. ISSN 0021-9606

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

A new method for determining the donor-acceptor distribution function in fluorescence resonance energy transfer (FRET) systems is presented. The approach is based on time-resolved fluorescence experiments with nanosecond resolution. Potential applications of this method include: determination of the morphology of porous materials (e.g., polymers, sol-gels, resins, etc.), monitoring processes occurring on the nanometer scale including biomolecules labeled with the donor/acceptor species, and FRET sensors based on competitive binding. In this paper a theoretical derivation of the method is presented and the method is tested in a series of numerical simulations. The experimental conditions regarding this approach are discussed and its applicability to real measurement systems is demonstrated